Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equinumerosity
xpcomen
Metamath Proof Explorer
Description: Commutative law for equinumerosity of Cartesian product. Proposition
4.22(d) of Mendelson p. 254. (Contributed by NM , 5-Jan-2004)
(Revised by Mario Carneiro , 15-Nov-2014)
Ref
Expression
Hypotheses
xpcomen.1
⊢ 𝐴 ∈ V
xpcomen.2
⊢ 𝐵 ∈ V
Assertion
xpcomen
⊢ ( 𝐴 × 𝐵 ) ≈ ( 𝐵 × 𝐴 )
Proof
Step
Hyp
Ref
Expression
1
xpcomen.1
⊢ 𝐴 ∈ V
2
xpcomen.2
⊢ 𝐵 ∈ V
3
1 2
xpex
⊢ ( 𝐴 × 𝐵 ) ∈ V
4
2 1
xpex
⊢ ( 𝐵 × 𝐴 ) ∈ V
5
eqid
⊢ ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↦ ∪ ◡ { 𝑥 } ) = ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↦ ∪ ◡ { 𝑥 } )
6
5
xpcomf1o
⊢ ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↦ ∪ ◡ { 𝑥 } ) : ( 𝐴 × 𝐵 ) –1-1 -onto → ( 𝐵 × 𝐴 )
7
f1oen2g
⊢ ( ( ( 𝐴 × 𝐵 ) ∈ V ∧ ( 𝐵 × 𝐴 ) ∈ V ∧ ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↦ ∪ ◡ { 𝑥 } ) : ( 𝐴 × 𝐵 ) –1-1 -onto → ( 𝐵 × 𝐴 ) ) → ( 𝐴 × 𝐵 ) ≈ ( 𝐵 × 𝐴 ) )
8
3 4 6 7
mp3an
⊢ ( 𝐴 × 𝐵 ) ≈ ( 𝐵 × 𝐴 )