Metamath Proof Explorer


Theorem xpcomeng

Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of Mendelson p. 254. (Contributed by NM, 27-Mar-2006)

Ref Expression
Assertion xpcomeng ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 × 𝐵 ) ≈ ( 𝐵 × 𝐴 ) )

Proof

Step Hyp Ref Expression
1 xpeq1 ( 𝑥 = 𝐴 → ( 𝑥 × 𝑦 ) = ( 𝐴 × 𝑦 ) )
2 xpeq2 ( 𝑥 = 𝐴 → ( 𝑦 × 𝑥 ) = ( 𝑦 × 𝐴 ) )
3 1 2 breq12d ( 𝑥 = 𝐴 → ( ( 𝑥 × 𝑦 ) ≈ ( 𝑦 × 𝑥 ) ↔ ( 𝐴 × 𝑦 ) ≈ ( 𝑦 × 𝐴 ) ) )
4 xpeq2 ( 𝑦 = 𝐵 → ( 𝐴 × 𝑦 ) = ( 𝐴 × 𝐵 ) )
5 xpeq1 ( 𝑦 = 𝐵 → ( 𝑦 × 𝐴 ) = ( 𝐵 × 𝐴 ) )
6 4 5 breq12d ( 𝑦 = 𝐵 → ( ( 𝐴 × 𝑦 ) ≈ ( 𝑦 × 𝐴 ) ↔ ( 𝐴 × 𝐵 ) ≈ ( 𝐵 × 𝐴 ) ) )
7 vex 𝑥 ∈ V
8 vex 𝑦 ∈ V
9 7 8 xpcomen ( 𝑥 × 𝑦 ) ≈ ( 𝑦 × 𝑥 )
10 3 6 9 vtocl2g ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 × 𝐵 ) ≈ ( 𝐵 × 𝐴 ) )