Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of Mendelson p. 254. (Contributed by NM, 27-Mar-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | xpcomeng | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 × 𝐵 ) ≈ ( 𝐵 × 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 × 𝑦 ) = ( 𝐴 × 𝑦 ) ) | |
2 | xpeq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑦 × 𝑥 ) = ( 𝑦 × 𝐴 ) ) | |
3 | 1 2 | breq12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 × 𝑦 ) ≈ ( 𝑦 × 𝑥 ) ↔ ( 𝐴 × 𝑦 ) ≈ ( 𝑦 × 𝐴 ) ) ) |
4 | xpeq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 × 𝑦 ) = ( 𝐴 × 𝐵 ) ) | |
5 | xpeq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 × 𝐴 ) = ( 𝐵 × 𝐴 ) ) | |
6 | 4 5 | breq12d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 × 𝑦 ) ≈ ( 𝑦 × 𝐴 ) ↔ ( 𝐴 × 𝐵 ) ≈ ( 𝐵 × 𝐴 ) ) ) |
7 | vex | ⊢ 𝑥 ∈ V | |
8 | vex | ⊢ 𝑦 ∈ V | |
9 | 7 8 | xpcomen | ⊢ ( 𝑥 × 𝑦 ) ≈ ( 𝑦 × 𝑥 ) |
10 | 3 6 9 | vtocl2g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 × 𝐵 ) ≈ ( 𝐵 × 𝐴 ) ) |