| Step | Hyp | Ref | Expression | 
						
							| 1 |  | enrefg | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ≈  𝐴 ) | 
						
							| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  𝐴  ≈  𝐴 ) | 
						
							| 3 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 4 |  | simp2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  𝐵  ∈  𝑊 ) | 
						
							| 5 |  | xpsnen2g | ⊢ ( ( ∅  ∈  V  ∧  𝐵  ∈  𝑊 )  →  ( { ∅ }  ×  𝐵 )  ≈  𝐵 ) | 
						
							| 6 | 3 4 5 | sylancr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( { ∅ }  ×  𝐵 )  ≈  𝐵 ) | 
						
							| 7 | 6 | ensymd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  𝐵  ≈  ( { ∅ }  ×  𝐵 ) ) | 
						
							| 8 |  | xpen | ⊢ ( ( 𝐴  ≈  𝐴  ∧  𝐵  ≈  ( { ∅ }  ×  𝐵 ) )  →  ( 𝐴  ×  𝐵 )  ≈  ( 𝐴  ×  ( { ∅ }  ×  𝐵 ) ) ) | 
						
							| 9 | 2 7 8 | syl2anc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( 𝐴  ×  𝐵 )  ≈  ( 𝐴  ×  ( { ∅ }  ×  𝐵 ) ) ) | 
						
							| 10 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 11 |  | simp3 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  𝐶  ∈  𝑋 ) | 
						
							| 12 |  | xpsnen2g | ⊢ ( ( 1o  ∈  On  ∧  𝐶  ∈  𝑋 )  →  ( { 1o }  ×  𝐶 )  ≈  𝐶 ) | 
						
							| 13 | 10 11 12 | sylancr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( { 1o }  ×  𝐶 )  ≈  𝐶 ) | 
						
							| 14 | 13 | ensymd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  𝐶  ≈  ( { 1o }  ×  𝐶 ) ) | 
						
							| 15 |  | xpen | ⊢ ( ( 𝐴  ≈  𝐴  ∧  𝐶  ≈  ( { 1o }  ×  𝐶 ) )  →  ( 𝐴  ×  𝐶 )  ≈  ( 𝐴  ×  ( { 1o }  ×  𝐶 ) ) ) | 
						
							| 16 | 2 14 15 | syl2anc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( 𝐴  ×  𝐶 )  ≈  ( 𝐴  ×  ( { 1o }  ×  𝐶 ) ) ) | 
						
							| 17 |  | xp01disjl | ⊢ ( ( { ∅ }  ×  𝐵 )  ∩  ( { 1o }  ×  𝐶 ) )  =  ∅ | 
						
							| 18 | 17 | xpeq2i | ⊢ ( 𝐴  ×  ( ( { ∅ }  ×  𝐵 )  ∩  ( { 1o }  ×  𝐶 ) ) )  =  ( 𝐴  ×  ∅ ) | 
						
							| 19 |  | xpindi | ⊢ ( 𝐴  ×  ( ( { ∅ }  ×  𝐵 )  ∩  ( { 1o }  ×  𝐶 ) ) )  =  ( ( 𝐴  ×  ( { ∅ }  ×  𝐵 ) )  ∩  ( 𝐴  ×  ( { 1o }  ×  𝐶 ) ) ) | 
						
							| 20 |  | xp0 | ⊢ ( 𝐴  ×  ∅ )  =  ∅ | 
						
							| 21 | 18 19 20 | 3eqtr3i | ⊢ ( ( 𝐴  ×  ( { ∅ }  ×  𝐵 ) )  ∩  ( 𝐴  ×  ( { 1o }  ×  𝐶 ) ) )  =  ∅ | 
						
							| 22 | 21 | a1i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( ( 𝐴  ×  ( { ∅ }  ×  𝐵 ) )  ∩  ( 𝐴  ×  ( { 1o }  ×  𝐶 ) ) )  =  ∅ ) | 
						
							| 23 |  | djuenun | ⊢ ( ( ( 𝐴  ×  𝐵 )  ≈  ( 𝐴  ×  ( { ∅ }  ×  𝐵 ) )  ∧  ( 𝐴  ×  𝐶 )  ≈  ( 𝐴  ×  ( { 1o }  ×  𝐶 ) )  ∧  ( ( 𝐴  ×  ( { ∅ }  ×  𝐵 ) )  ∩  ( 𝐴  ×  ( { 1o }  ×  𝐶 ) ) )  =  ∅ )  →  ( ( 𝐴  ×  𝐵 )  ⊔  ( 𝐴  ×  𝐶 ) )  ≈  ( ( 𝐴  ×  ( { ∅ }  ×  𝐵 ) )  ∪  ( 𝐴  ×  ( { 1o }  ×  𝐶 ) ) ) ) | 
						
							| 24 | 9 16 22 23 | syl3anc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( ( 𝐴  ×  𝐵 )  ⊔  ( 𝐴  ×  𝐶 ) )  ≈  ( ( 𝐴  ×  ( { ∅ }  ×  𝐵 ) )  ∪  ( 𝐴  ×  ( { 1o }  ×  𝐶 ) ) ) ) | 
						
							| 25 |  | df-dju | ⊢ ( 𝐵  ⊔  𝐶 )  =  ( ( { ∅ }  ×  𝐵 )  ∪  ( { 1o }  ×  𝐶 ) ) | 
						
							| 26 | 25 | xpeq2i | ⊢ ( 𝐴  ×  ( 𝐵  ⊔  𝐶 ) )  =  ( 𝐴  ×  ( ( { ∅ }  ×  𝐵 )  ∪  ( { 1o }  ×  𝐶 ) ) ) | 
						
							| 27 |  | xpundi | ⊢ ( 𝐴  ×  ( ( { ∅ }  ×  𝐵 )  ∪  ( { 1o }  ×  𝐶 ) ) )  =  ( ( 𝐴  ×  ( { ∅ }  ×  𝐵 ) )  ∪  ( 𝐴  ×  ( { 1o }  ×  𝐶 ) ) ) | 
						
							| 28 | 26 27 | eqtri | ⊢ ( 𝐴  ×  ( 𝐵  ⊔  𝐶 ) )  =  ( ( 𝐴  ×  ( { ∅ }  ×  𝐵 ) )  ∪  ( 𝐴  ×  ( { 1o }  ×  𝐶 ) ) ) | 
						
							| 29 | 24 28 | breqtrrdi | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( ( 𝐴  ×  𝐵 )  ⊔  ( 𝐴  ×  𝐶 ) )  ≈  ( 𝐴  ×  ( 𝐵  ⊔  𝐶 ) ) ) | 
						
							| 30 | 29 | ensymd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( 𝐴  ×  ( 𝐵  ⊔  𝐶 ) )  ≈  ( ( 𝐴  ×  𝐵 )  ⊔  ( 𝐴  ×  𝐶 ) ) ) |