Metamath Proof Explorer


Theorem xpdom1

Description: Dominance law for Cartesian product. Theorem 6L(c) of Enderton p. 149. (Contributed by NM, 28-Sep-2004) (Revised by NM, 29-Mar-2006) (Revised by Mario Carneiro, 7-May-2015)

Ref Expression
Hypothesis xpdom1.2 𝐶 ∈ V
Assertion xpdom1 ( 𝐴𝐵 → ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐶 ) )

Proof

Step Hyp Ref Expression
1 xpdom1.2 𝐶 ∈ V
2 xpdom1g ( ( 𝐶 ∈ V ∧ 𝐴𝐵 ) → ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐶 ) )
3 1 2 mpan ( 𝐴𝐵 → ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐶 ) )