| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reldom |
⊢ Rel ≼ |
| 2 |
1
|
brrelex1i |
⊢ ( 𝐴 ≼ 𝐵 → 𝐴 ∈ V ) |
| 3 |
|
xpcomeng |
⊢ ( ( 𝐴 ∈ V ∧ 𝐶 ∈ 𝑉 ) → ( 𝐴 × 𝐶 ) ≈ ( 𝐶 × 𝐴 ) ) |
| 4 |
3
|
ancoms |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ V ) → ( 𝐴 × 𝐶 ) ≈ ( 𝐶 × 𝐴 ) ) |
| 5 |
2 4
|
sylan2 |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵 ) → ( 𝐴 × 𝐶 ) ≈ ( 𝐶 × 𝐴 ) ) |
| 6 |
|
xpdom2g |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵 ) → ( 𝐶 × 𝐴 ) ≼ ( 𝐶 × 𝐵 ) ) |
| 7 |
1
|
brrelex2i |
⊢ ( 𝐴 ≼ 𝐵 → 𝐵 ∈ V ) |
| 8 |
|
xpcomeng |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐵 ∈ V ) → ( 𝐶 × 𝐵 ) ≈ ( 𝐵 × 𝐶 ) ) |
| 9 |
7 8
|
sylan2 |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵 ) → ( 𝐶 × 𝐵 ) ≈ ( 𝐵 × 𝐶 ) ) |
| 10 |
|
domentr |
⊢ ( ( ( 𝐶 × 𝐴 ) ≼ ( 𝐶 × 𝐵 ) ∧ ( 𝐶 × 𝐵 ) ≈ ( 𝐵 × 𝐶 ) ) → ( 𝐶 × 𝐴 ) ≼ ( 𝐵 × 𝐶 ) ) |
| 11 |
6 9 10
|
syl2anc |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵 ) → ( 𝐶 × 𝐴 ) ≼ ( 𝐵 × 𝐶 ) ) |
| 12 |
|
endomtr |
⊢ ( ( ( 𝐴 × 𝐶 ) ≈ ( 𝐶 × 𝐴 ) ∧ ( 𝐶 × 𝐴 ) ≼ ( 𝐵 × 𝐶 ) ) → ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐶 ) ) |
| 13 |
5 11 12
|
syl2anc |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵 ) → ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐶 ) ) |