Metamath Proof Explorer


Theorem xpdom2g

Description: Dominance law for Cartesian product. Theorem 6L(c) of Enderton p. 149. (Contributed by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion xpdom2g ( ( 𝐶𝑉𝐴𝐵 ) → ( 𝐶 × 𝐴 ) ≼ ( 𝐶 × 𝐵 ) )

Proof

Step Hyp Ref Expression
1 xpeq1 ( 𝑥 = 𝐶 → ( 𝑥 × 𝐴 ) = ( 𝐶 × 𝐴 ) )
2 xpeq1 ( 𝑥 = 𝐶 → ( 𝑥 × 𝐵 ) = ( 𝐶 × 𝐵 ) )
3 1 2 breq12d ( 𝑥 = 𝐶 → ( ( 𝑥 × 𝐴 ) ≼ ( 𝑥 × 𝐵 ) ↔ ( 𝐶 × 𝐴 ) ≼ ( 𝐶 × 𝐵 ) ) )
4 3 imbi2d ( 𝑥 = 𝐶 → ( ( 𝐴𝐵 → ( 𝑥 × 𝐴 ) ≼ ( 𝑥 × 𝐵 ) ) ↔ ( 𝐴𝐵 → ( 𝐶 × 𝐴 ) ≼ ( 𝐶 × 𝐵 ) ) ) )
5 vex 𝑥 ∈ V
6 5 xpdom2 ( 𝐴𝐵 → ( 𝑥 × 𝐴 ) ≼ ( 𝑥 × 𝐵 ) )
7 4 6 vtoclg ( 𝐶𝑉 → ( 𝐴𝐵 → ( 𝐶 × 𝐴 ) ≼ ( 𝐶 × 𝐵 ) ) )
8 7 imp ( ( 𝐶𝑉𝐴𝐵 ) → ( 𝐶 × 𝐴 ) ≼ ( 𝐶 × 𝐵 ) )