Description: Dominance law for Cartesian product. Theorem 6L(c) of Enderton p. 149. (Contributed by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpdom2g | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵 ) → ( 𝐶 × 𝐴 ) ≼ ( 𝐶 × 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 | ⊢ ( 𝑥 = 𝐶 → ( 𝑥 × 𝐴 ) = ( 𝐶 × 𝐴 ) ) | |
| 2 | xpeq1 | ⊢ ( 𝑥 = 𝐶 → ( 𝑥 × 𝐵 ) = ( 𝐶 × 𝐵 ) ) | |
| 3 | 1 2 | breq12d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝑥 × 𝐴 ) ≼ ( 𝑥 × 𝐵 ) ↔ ( 𝐶 × 𝐴 ) ≼ ( 𝐶 × 𝐵 ) ) ) |
| 4 | 3 | imbi2d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 ≼ 𝐵 → ( 𝑥 × 𝐴 ) ≼ ( 𝑥 × 𝐵 ) ) ↔ ( 𝐴 ≼ 𝐵 → ( 𝐶 × 𝐴 ) ≼ ( 𝐶 × 𝐵 ) ) ) ) |
| 5 | vex | ⊢ 𝑥 ∈ V | |
| 6 | 5 | xpdom2 | ⊢ ( 𝐴 ≼ 𝐵 → ( 𝑥 × 𝐴 ) ≼ ( 𝑥 × 𝐵 ) ) |
| 7 | 4 6 | vtoclg | ⊢ ( 𝐶 ∈ 𝑉 → ( 𝐴 ≼ 𝐵 → ( 𝐶 × 𝐴 ) ≼ ( 𝐶 × 𝐵 ) ) ) |
| 8 | 7 | imp | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵 ) → ( 𝐶 × 𝐴 ) ≼ ( 𝐶 × 𝐵 ) ) |