Step |
Hyp |
Ref |
Expression |
1 |
|
n0 |
⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐵 ) |
2 |
|
xpsneng |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 × { 𝑥 } ) ≈ 𝐴 ) |
3 |
2
|
3adant2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 × { 𝑥 } ) ≈ 𝐴 ) |
4 |
3
|
ensymd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → 𝐴 ≈ ( 𝐴 × { 𝑥 } ) ) |
5 |
|
xpexg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 × 𝐵 ) ∈ V ) |
6 |
5
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 × 𝐵 ) ∈ V ) |
7 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
8 |
7
|
snssd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → { 𝑥 } ⊆ 𝐵 ) |
9 |
|
xpss2 |
⊢ ( { 𝑥 } ⊆ 𝐵 → ( 𝐴 × { 𝑥 } ) ⊆ ( 𝐴 × 𝐵 ) ) |
10 |
8 9
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 × { 𝑥 } ) ⊆ ( 𝐴 × 𝐵 ) ) |
11 |
|
ssdomg |
⊢ ( ( 𝐴 × 𝐵 ) ∈ V → ( ( 𝐴 × { 𝑥 } ) ⊆ ( 𝐴 × 𝐵 ) → ( 𝐴 × { 𝑥 } ) ≼ ( 𝐴 × 𝐵 ) ) ) |
12 |
6 10 11
|
sylc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 × { 𝑥 } ) ≼ ( 𝐴 × 𝐵 ) ) |
13 |
|
endomtr |
⊢ ( ( 𝐴 ≈ ( 𝐴 × { 𝑥 } ) ∧ ( 𝐴 × { 𝑥 } ) ≼ ( 𝐴 × 𝐵 ) ) → 𝐴 ≼ ( 𝐴 × 𝐵 ) ) |
14 |
4 12 13
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → 𝐴 ≼ ( 𝐴 × 𝐵 ) ) |
15 |
14
|
3expia |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑥 ∈ 𝐵 → 𝐴 ≼ ( 𝐴 × 𝐵 ) ) ) |
16 |
15
|
exlimdv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑥 𝑥 ∈ 𝐵 → 𝐴 ≼ ( 𝐴 × 𝐵 ) ) ) |
17 |
1 16
|
syl5bi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐵 ≠ ∅ → 𝐴 ≼ ( 𝐴 × 𝐵 ) ) ) |
18 |
17
|
3impia |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅ ) → 𝐴 ≼ ( 𝐴 × 𝐵 ) ) |