| Step |
Hyp |
Ref |
Expression |
| 1 |
|
n0 |
⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐵 ) |
| 2 |
|
xpsneng |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 × { 𝑥 } ) ≈ 𝐴 ) |
| 3 |
2
|
3adant2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 × { 𝑥 } ) ≈ 𝐴 ) |
| 4 |
3
|
ensymd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → 𝐴 ≈ ( 𝐴 × { 𝑥 } ) ) |
| 5 |
|
xpexg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 × 𝐵 ) ∈ V ) |
| 6 |
5
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 × 𝐵 ) ∈ V ) |
| 7 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 8 |
7
|
snssd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → { 𝑥 } ⊆ 𝐵 ) |
| 9 |
|
xpss2 |
⊢ ( { 𝑥 } ⊆ 𝐵 → ( 𝐴 × { 𝑥 } ) ⊆ ( 𝐴 × 𝐵 ) ) |
| 10 |
8 9
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 × { 𝑥 } ) ⊆ ( 𝐴 × 𝐵 ) ) |
| 11 |
|
ssdomg |
⊢ ( ( 𝐴 × 𝐵 ) ∈ V → ( ( 𝐴 × { 𝑥 } ) ⊆ ( 𝐴 × 𝐵 ) → ( 𝐴 × { 𝑥 } ) ≼ ( 𝐴 × 𝐵 ) ) ) |
| 12 |
6 10 11
|
sylc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 × { 𝑥 } ) ≼ ( 𝐴 × 𝐵 ) ) |
| 13 |
|
endomtr |
⊢ ( ( 𝐴 ≈ ( 𝐴 × { 𝑥 } ) ∧ ( 𝐴 × { 𝑥 } ) ≼ ( 𝐴 × 𝐵 ) ) → 𝐴 ≼ ( 𝐴 × 𝐵 ) ) |
| 14 |
4 12 13
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → 𝐴 ≼ ( 𝐴 × 𝐵 ) ) |
| 15 |
14
|
3expia |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑥 ∈ 𝐵 → 𝐴 ≼ ( 𝐴 × 𝐵 ) ) ) |
| 16 |
15
|
exlimdv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑥 𝑥 ∈ 𝐵 → 𝐴 ≼ ( 𝐴 × 𝐵 ) ) ) |
| 17 |
1 16
|
biimtrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐵 ≠ ∅ → 𝐴 ≼ ( 𝐴 × 𝐵 ) ) ) |
| 18 |
17
|
3impia |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅ ) → 𝐴 ≼ ( 𝐴 × 𝐵 ) ) |