| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relen |
⊢ Rel ≈ |
| 2 |
1
|
brrelex1i |
⊢ ( 𝐶 ≈ 𝐷 → 𝐶 ∈ V ) |
| 3 |
|
endom |
⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵 ) |
| 4 |
|
xpdom1g |
⊢ ( ( 𝐶 ∈ V ∧ 𝐴 ≼ 𝐵 ) → ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐶 ) ) |
| 5 |
2 3 4
|
syl2anr |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐶 ) ) |
| 6 |
1
|
brrelex2i |
⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ∈ V ) |
| 7 |
|
endom |
⊢ ( 𝐶 ≈ 𝐷 → 𝐶 ≼ 𝐷 ) |
| 8 |
|
xpdom2g |
⊢ ( ( 𝐵 ∈ V ∧ 𝐶 ≼ 𝐷 ) → ( 𝐵 × 𝐶 ) ≼ ( 𝐵 × 𝐷 ) ) |
| 9 |
6 7 8
|
syl2an |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( 𝐵 × 𝐶 ) ≼ ( 𝐵 × 𝐷 ) ) |
| 10 |
|
domtr |
⊢ ( ( ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐶 ) ∧ ( 𝐵 × 𝐶 ) ≼ ( 𝐵 × 𝐷 ) ) → ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐷 ) ) |
| 11 |
5 9 10
|
syl2anc |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐷 ) ) |
| 12 |
1
|
brrelex2i |
⊢ ( 𝐶 ≈ 𝐷 → 𝐷 ∈ V ) |
| 13 |
|
ensym |
⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴 ) |
| 14 |
|
endom |
⊢ ( 𝐵 ≈ 𝐴 → 𝐵 ≼ 𝐴 ) |
| 15 |
13 14
|
syl |
⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ≼ 𝐴 ) |
| 16 |
|
xpdom1g |
⊢ ( ( 𝐷 ∈ V ∧ 𝐵 ≼ 𝐴 ) → ( 𝐵 × 𝐷 ) ≼ ( 𝐴 × 𝐷 ) ) |
| 17 |
12 15 16
|
syl2anr |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( 𝐵 × 𝐷 ) ≼ ( 𝐴 × 𝐷 ) ) |
| 18 |
1
|
brrelex1i |
⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ∈ V ) |
| 19 |
|
ensym |
⊢ ( 𝐶 ≈ 𝐷 → 𝐷 ≈ 𝐶 ) |
| 20 |
|
endom |
⊢ ( 𝐷 ≈ 𝐶 → 𝐷 ≼ 𝐶 ) |
| 21 |
19 20
|
syl |
⊢ ( 𝐶 ≈ 𝐷 → 𝐷 ≼ 𝐶 ) |
| 22 |
|
xpdom2g |
⊢ ( ( 𝐴 ∈ V ∧ 𝐷 ≼ 𝐶 ) → ( 𝐴 × 𝐷 ) ≼ ( 𝐴 × 𝐶 ) ) |
| 23 |
18 21 22
|
syl2an |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( 𝐴 × 𝐷 ) ≼ ( 𝐴 × 𝐶 ) ) |
| 24 |
|
domtr |
⊢ ( ( ( 𝐵 × 𝐷 ) ≼ ( 𝐴 × 𝐷 ) ∧ ( 𝐴 × 𝐷 ) ≼ ( 𝐴 × 𝐶 ) ) → ( 𝐵 × 𝐷 ) ≼ ( 𝐴 × 𝐶 ) ) |
| 25 |
17 23 24
|
syl2anc |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( 𝐵 × 𝐷 ) ≼ ( 𝐴 × 𝐶 ) ) |
| 26 |
|
sbth |
⊢ ( ( ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐷 ) ∧ ( 𝐵 × 𝐷 ) ≼ ( 𝐴 × 𝐶 ) ) → ( 𝐴 × 𝐶 ) ≈ ( 𝐵 × 𝐷 ) ) |
| 27 |
11 25 26
|
syl2anc |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( 𝐴 × 𝐶 ) ≈ ( 𝐵 × 𝐷 ) ) |