Metamath Proof Explorer


Theorem xpen

Description: Equinumerosity law for Cartesian product. Proposition 4.22(b) of Mendelson p. 254. (Contributed by NM, 24-Jul-2004) (Proof shortened by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion xpen ( ( 𝐴𝐵𝐶𝐷 ) → ( 𝐴 × 𝐶 ) ≈ ( 𝐵 × 𝐷 ) )

Proof

Step Hyp Ref Expression
1 relen Rel ≈
2 1 brrelex1i ( 𝐶𝐷𝐶 ∈ V )
3 endom ( 𝐴𝐵𝐴𝐵 )
4 xpdom1g ( ( 𝐶 ∈ V ∧ 𝐴𝐵 ) → ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐶 ) )
5 2 3 4 syl2anr ( ( 𝐴𝐵𝐶𝐷 ) → ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐶 ) )
6 1 brrelex2i ( 𝐴𝐵𝐵 ∈ V )
7 endom ( 𝐶𝐷𝐶𝐷 )
8 xpdom2g ( ( 𝐵 ∈ V ∧ 𝐶𝐷 ) → ( 𝐵 × 𝐶 ) ≼ ( 𝐵 × 𝐷 ) )
9 6 7 8 syl2an ( ( 𝐴𝐵𝐶𝐷 ) → ( 𝐵 × 𝐶 ) ≼ ( 𝐵 × 𝐷 ) )
10 domtr ( ( ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐶 ) ∧ ( 𝐵 × 𝐶 ) ≼ ( 𝐵 × 𝐷 ) ) → ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐷 ) )
11 5 9 10 syl2anc ( ( 𝐴𝐵𝐶𝐷 ) → ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐷 ) )
12 1 brrelex2i ( 𝐶𝐷𝐷 ∈ V )
13 ensym ( 𝐴𝐵𝐵𝐴 )
14 endom ( 𝐵𝐴𝐵𝐴 )
15 13 14 syl ( 𝐴𝐵𝐵𝐴 )
16 xpdom1g ( ( 𝐷 ∈ V ∧ 𝐵𝐴 ) → ( 𝐵 × 𝐷 ) ≼ ( 𝐴 × 𝐷 ) )
17 12 15 16 syl2anr ( ( 𝐴𝐵𝐶𝐷 ) → ( 𝐵 × 𝐷 ) ≼ ( 𝐴 × 𝐷 ) )
18 1 brrelex1i ( 𝐴𝐵𝐴 ∈ V )
19 ensym ( 𝐶𝐷𝐷𝐶 )
20 endom ( 𝐷𝐶𝐷𝐶 )
21 19 20 syl ( 𝐶𝐷𝐷𝐶 )
22 xpdom2g ( ( 𝐴 ∈ V ∧ 𝐷𝐶 ) → ( 𝐴 × 𝐷 ) ≼ ( 𝐴 × 𝐶 ) )
23 18 21 22 syl2an ( ( 𝐴𝐵𝐶𝐷 ) → ( 𝐴 × 𝐷 ) ≼ ( 𝐴 × 𝐶 ) )
24 domtr ( ( ( 𝐵 × 𝐷 ) ≼ ( 𝐴 × 𝐷 ) ∧ ( 𝐴 × 𝐷 ) ≼ ( 𝐴 × 𝐶 ) ) → ( 𝐵 × 𝐷 ) ≼ ( 𝐴 × 𝐶 ) )
25 17 23 24 syl2anc ( ( 𝐴𝐵𝐶𝐷 ) → ( 𝐵 × 𝐷 ) ≼ ( 𝐴 × 𝐶 ) )
26 sbth ( ( ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐷 ) ∧ ( 𝐵 × 𝐷 ) ≼ ( 𝐴 × 𝐶 ) ) → ( 𝐴 × 𝐶 ) ≈ ( 𝐵 × 𝐷 ) )
27 11 25 26 syl2anc ( ( 𝐴𝐵𝐶𝐷 ) → ( 𝐴 × 𝐶 ) ≈ ( 𝐵 × 𝐷 ) )