Step |
Hyp |
Ref |
Expression |
1 |
|
relen |
⊢ Rel ≈ |
2 |
1
|
brrelex1i |
⊢ ( 𝐶 ≈ 𝐷 → 𝐶 ∈ V ) |
3 |
|
endom |
⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵 ) |
4 |
|
xpdom1g |
⊢ ( ( 𝐶 ∈ V ∧ 𝐴 ≼ 𝐵 ) → ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐶 ) ) |
5 |
2 3 4
|
syl2anr |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐶 ) ) |
6 |
1
|
brrelex2i |
⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ∈ V ) |
7 |
|
endom |
⊢ ( 𝐶 ≈ 𝐷 → 𝐶 ≼ 𝐷 ) |
8 |
|
xpdom2g |
⊢ ( ( 𝐵 ∈ V ∧ 𝐶 ≼ 𝐷 ) → ( 𝐵 × 𝐶 ) ≼ ( 𝐵 × 𝐷 ) ) |
9 |
6 7 8
|
syl2an |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( 𝐵 × 𝐶 ) ≼ ( 𝐵 × 𝐷 ) ) |
10 |
|
domtr |
⊢ ( ( ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐶 ) ∧ ( 𝐵 × 𝐶 ) ≼ ( 𝐵 × 𝐷 ) ) → ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐷 ) ) |
11 |
5 9 10
|
syl2anc |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐷 ) ) |
12 |
1
|
brrelex2i |
⊢ ( 𝐶 ≈ 𝐷 → 𝐷 ∈ V ) |
13 |
|
ensym |
⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴 ) |
14 |
|
endom |
⊢ ( 𝐵 ≈ 𝐴 → 𝐵 ≼ 𝐴 ) |
15 |
13 14
|
syl |
⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ≼ 𝐴 ) |
16 |
|
xpdom1g |
⊢ ( ( 𝐷 ∈ V ∧ 𝐵 ≼ 𝐴 ) → ( 𝐵 × 𝐷 ) ≼ ( 𝐴 × 𝐷 ) ) |
17 |
12 15 16
|
syl2anr |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( 𝐵 × 𝐷 ) ≼ ( 𝐴 × 𝐷 ) ) |
18 |
1
|
brrelex1i |
⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ∈ V ) |
19 |
|
ensym |
⊢ ( 𝐶 ≈ 𝐷 → 𝐷 ≈ 𝐶 ) |
20 |
|
endom |
⊢ ( 𝐷 ≈ 𝐶 → 𝐷 ≼ 𝐶 ) |
21 |
19 20
|
syl |
⊢ ( 𝐶 ≈ 𝐷 → 𝐷 ≼ 𝐶 ) |
22 |
|
xpdom2g |
⊢ ( ( 𝐴 ∈ V ∧ 𝐷 ≼ 𝐶 ) → ( 𝐴 × 𝐷 ) ≼ ( 𝐴 × 𝐶 ) ) |
23 |
18 21 22
|
syl2an |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( 𝐴 × 𝐷 ) ≼ ( 𝐴 × 𝐶 ) ) |
24 |
|
domtr |
⊢ ( ( ( 𝐵 × 𝐷 ) ≼ ( 𝐴 × 𝐷 ) ∧ ( 𝐴 × 𝐷 ) ≼ ( 𝐴 × 𝐶 ) ) → ( 𝐵 × 𝐷 ) ≼ ( 𝐴 × 𝐶 ) ) |
25 |
17 23 24
|
syl2anc |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( 𝐵 × 𝐷 ) ≼ ( 𝐴 × 𝐶 ) ) |
26 |
|
sbth |
⊢ ( ( ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐷 ) ∧ ( 𝐵 × 𝐷 ) ≼ ( 𝐴 × 𝐶 ) ) → ( 𝐴 × 𝐶 ) ≈ ( 𝐵 × 𝐷 ) ) |
27 |
11 25 26
|
syl2anc |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( 𝐴 × 𝐶 ) ≈ ( 𝐵 × 𝐷 ) ) |