Description: At least one member of an empty Cartesian product is empty. (Contributed by NM, 27-Aug-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | xpeq0 | ⊢ ( ( 𝐴 × 𝐵 ) = ∅ ↔ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpnz | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ↔ ( 𝐴 × 𝐵 ) ≠ ∅ ) | |
2 | 1 | necon2bbii | ⊢ ( ( 𝐴 × 𝐵 ) = ∅ ↔ ¬ ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ) |
3 | ianor | ⊢ ( ¬ ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ↔ ( ¬ 𝐴 ≠ ∅ ∨ ¬ 𝐵 ≠ ∅ ) ) | |
4 | nne | ⊢ ( ¬ 𝐴 ≠ ∅ ↔ 𝐴 = ∅ ) | |
5 | nne | ⊢ ( ¬ 𝐵 ≠ ∅ ↔ 𝐵 = ∅ ) | |
6 | 4 5 | orbi12i | ⊢ ( ( ¬ 𝐴 ≠ ∅ ∨ ¬ 𝐵 ≠ ∅ ) ↔ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ) |
7 | 2 3 6 | 3bitri | ⊢ ( ( 𝐴 × 𝐵 ) = ∅ ↔ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ) |