Metamath Proof Explorer


Theorem xpeq0

Description: At least one member of an empty Cartesian product is empty. (Contributed by NM, 27-Aug-2006)

Ref Expression
Assertion xpeq0 ( ( 𝐴 × 𝐵 ) = ∅ ↔ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) )

Proof

Step Hyp Ref Expression
1 xpnz ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ↔ ( 𝐴 × 𝐵 ) ≠ ∅ )
2 1 necon2bbii ( ( 𝐴 × 𝐵 ) = ∅ ↔ ¬ ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) )
3 ianor ( ¬ ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ↔ ( ¬ 𝐴 ≠ ∅ ∨ ¬ 𝐵 ≠ ∅ ) )
4 nne ( ¬ 𝐴 ≠ ∅ ↔ 𝐴 = ∅ )
5 nne ( ¬ 𝐵 ≠ ∅ ↔ 𝐵 = ∅ )
6 4 5 orbi12i ( ( ¬ 𝐴 ≠ ∅ ∨ ¬ 𝐵 ≠ ∅ ) ↔ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) )
7 2 3 6 3bitri ( ( 𝐴 × 𝐵 ) = ∅ ↔ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) )