Metamath Proof Explorer


Theorem xpeq12d

Description: Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013)

Ref Expression
Hypotheses xpeq1d.1 ( 𝜑𝐴 = 𝐵 )
xpeq12d.2 ( 𝜑𝐶 = 𝐷 )
Assertion xpeq12d ( 𝜑 → ( 𝐴 × 𝐶 ) = ( 𝐵 × 𝐷 ) )

Proof

Step Hyp Ref Expression
1 xpeq1d.1 ( 𝜑𝐴 = 𝐵 )
2 xpeq12d.2 ( 𝜑𝐶 = 𝐷 )
3 xpeq12 ( ( 𝐴 = 𝐵𝐶 = 𝐷 ) → ( 𝐴 × 𝐶 ) = ( 𝐵 × 𝐷 ) )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 × 𝐶 ) = ( 𝐵 × 𝐷 ) )