Metamath Proof Explorer


Theorem xpeq12i

Description: Equality inference for Cartesian product. (Contributed by FL, 31-Aug-2009)

Ref Expression
Hypotheses xpeq12i.1 𝐴 = 𝐵
xpeq12i.2 𝐶 = 𝐷
Assertion xpeq12i ( 𝐴 × 𝐶 ) = ( 𝐵 × 𝐷 )

Proof

Step Hyp Ref Expression
1 xpeq12i.1 𝐴 = 𝐵
2 xpeq12i.2 𝐶 = 𝐷
3 xpeq12 ( ( 𝐴 = 𝐵𝐶 = 𝐷 ) → ( 𝐴 × 𝐶 ) = ( 𝐵 × 𝐷 ) )
4 1 2 3 mp2an ( 𝐴 × 𝐶 ) = ( 𝐵 × 𝐷 )