Description: Equality theorem for Cartesian product. (Contributed by NM, 5-Jul-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpeq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐶 × 𝐴 ) = ( 𝐶 × 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) ) | |
| 2 | 1 | anbi2d | ⊢ ( 𝐴 = 𝐵 → ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 3 | 2 | opabbidv | ⊢ ( 𝐴 = 𝐵 → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵 ) } ) |
| 4 | df-xp | ⊢ ( 𝐶 × 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴 ) } | |
| 5 | df-xp | ⊢ ( 𝐶 × 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵 ) } | |
| 6 | 3 4 5 | 3eqtr4g | ⊢ ( 𝐴 = 𝐵 → ( 𝐶 × 𝐴 ) = ( 𝐶 × 𝐵 ) ) |