Metamath Proof Explorer


Theorem xpex

Description: The Cartesian product of two sets is a set. Proposition 6.2 of TakeutiZaring p. 23. (Contributed by NM, 14-Aug-1994)

Ref Expression
Hypotheses xpex.1 𝐴 ∈ V
xpex.2 𝐵 ∈ V
Assertion xpex ( 𝐴 × 𝐵 ) ∈ V

Proof

Step Hyp Ref Expression
1 xpex.1 𝐴 ∈ V
2 xpex.2 𝐵 ∈ V
3 xpexg ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 × 𝐵 ) ∈ V )
4 1 2 3 mp2an ( 𝐴 × 𝐵 ) ∈ V