Description: A condition where the converse of xpex holds as well. Corollary 6.9(2) in TakeutiZaring p. 26. (Contributed by Andrew Salmon, 13-Nov-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | xpexcnv | ⊢ ( ( 𝐵 ≠ ∅ ∧ ( 𝐴 × 𝐵 ) ∈ V ) → 𝐴 ∈ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmexg | ⊢ ( ( 𝐴 × 𝐵 ) ∈ V → dom ( 𝐴 × 𝐵 ) ∈ V ) | |
2 | dmxp | ⊢ ( 𝐵 ≠ ∅ → dom ( 𝐴 × 𝐵 ) = 𝐴 ) | |
3 | 2 | eleq1d | ⊢ ( 𝐵 ≠ ∅ → ( dom ( 𝐴 × 𝐵 ) ∈ V ↔ 𝐴 ∈ V ) ) |
4 | 1 3 | syl5ib | ⊢ ( 𝐵 ≠ ∅ → ( ( 𝐴 × 𝐵 ) ∈ V → 𝐴 ∈ V ) ) |
5 | 4 | imp | ⊢ ( ( 𝐵 ≠ ∅ ∧ ( 𝐴 × 𝐵 ) ∈ V ) → 𝐴 ∈ V ) |