Metamath Proof Explorer


Theorem xpexcnv

Description: A condition where the converse of xpex holds as well. Corollary 6.9(2) in TakeutiZaring p. 26. (Contributed by Andrew Salmon, 13-Nov-2011)

Ref Expression
Assertion xpexcnv ( ( 𝐵 ≠ ∅ ∧ ( 𝐴 × 𝐵 ) ∈ V ) → 𝐴 ∈ V )

Proof

Step Hyp Ref Expression
1 dmexg ( ( 𝐴 × 𝐵 ) ∈ V → dom ( 𝐴 × 𝐵 ) ∈ V )
2 dmxp ( 𝐵 ≠ ∅ → dom ( 𝐴 × 𝐵 ) = 𝐴 )
3 2 eleq1d ( 𝐵 ≠ ∅ → ( dom ( 𝐴 × 𝐵 ) ∈ V ↔ 𝐴 ∈ V ) )
4 1 3 syl5ib ( 𝐵 ≠ ∅ → ( ( 𝐴 × 𝐵 ) ∈ V → 𝐴 ∈ V ) )
5 4 imp ( ( 𝐵 ≠ ∅ ∧ ( 𝐴 × 𝐵 ) ∈ V ) → 𝐴 ∈ V )