Description: A condition where the converse of xpex holds as well. Corollary 6.9(2) in TakeutiZaring p. 26. (Contributed by Andrew Salmon, 13-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpexcnv | ⊢ ( ( 𝐵 ≠ ∅ ∧ ( 𝐴 × 𝐵 ) ∈ V ) → 𝐴 ∈ V ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dmexg | ⊢ ( ( 𝐴 × 𝐵 ) ∈ V → dom ( 𝐴 × 𝐵 ) ∈ V ) | |
| 2 | dmxp | ⊢ ( 𝐵 ≠ ∅ → dom ( 𝐴 × 𝐵 ) = 𝐴 ) | |
| 3 | 2 | eleq1d | ⊢ ( 𝐵 ≠ ∅ → ( dom ( 𝐴 × 𝐵 ) ∈ V ↔ 𝐴 ∈ V ) ) | 
| 4 | 1 3 | imbitrid | ⊢ ( 𝐵 ≠ ∅ → ( ( 𝐴 × 𝐵 ) ∈ V → 𝐴 ∈ V ) ) | 
| 5 | 4 | imp | ⊢ ( ( 𝐵 ≠ ∅ ∧ ( 𝐴 × 𝐵 ) ∈ V ) → 𝐴 ∈ V ) |