Metamath Proof Explorer


Theorem xpexd

Description: The Cartesian product of two sets is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses xpexd.1 ( 𝜑𝐴𝑉 )
xpexd.2 ( 𝜑𝐵𝑊 )
Assertion xpexd ( 𝜑 → ( 𝐴 × 𝐵 ) ∈ V )

Proof

Step Hyp Ref Expression
1 xpexd.1 ( 𝜑𝐴𝑉 )
2 xpexd.2 ( 𝜑𝐵𝑊 )
3 xpexg ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 × 𝐵 ) ∈ V )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 × 𝐵 ) ∈ V )