Description: The Cartesian product of two sets is a set. Proposition 6.2 of TakeutiZaring p. 23. See also xpexgALT . (Contributed by NM, 14-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpexg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 × 𝐵 ) ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsspw | ⊢ ( 𝐴 × 𝐵 ) ⊆ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) | |
| 2 | unexg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) | |
| 3 | pwexg | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ V → 𝒫 ( 𝐴 ∪ 𝐵 ) ∈ V ) | |
| 4 | pwexg | ⊢ ( 𝒫 ( 𝐴 ∪ 𝐵 ) ∈ V → 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ∈ V ) | |
| 5 | 2 3 4 | 3syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ∈ V ) |
| 6 | ssexg | ⊢ ( ( ( 𝐴 × 𝐵 ) ⊆ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ∧ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ∈ V ) → ( 𝐴 × 𝐵 ) ∈ V ) | |
| 7 | 1 5 6 | sylancr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 × 𝐵 ) ∈ V ) |