Step |
Hyp |
Ref |
Expression |
1 |
|
iunid |
⊢ ∪ 𝑦 ∈ 𝐵 { 𝑦 } = 𝐵 |
2 |
1
|
xpeq2i |
⊢ ( 𝐴 × ∪ 𝑦 ∈ 𝐵 { 𝑦 } ) = ( 𝐴 × 𝐵 ) |
3 |
|
xpiundi |
⊢ ( 𝐴 × ∪ 𝑦 ∈ 𝐵 { 𝑦 } ) = ∪ 𝑦 ∈ 𝐵 ( 𝐴 × { 𝑦 } ) |
4 |
2 3
|
eqtr3i |
⊢ ( 𝐴 × 𝐵 ) = ∪ 𝑦 ∈ 𝐵 ( 𝐴 × { 𝑦 } ) |
5 |
|
id |
⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ 𝑊 ) |
6 |
|
fconstmpt |
⊢ ( 𝐴 × { 𝑦 } ) = ( 𝑥 ∈ 𝐴 ↦ 𝑦 ) |
7 |
|
mptexg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ 𝐴 ↦ 𝑦 ) ∈ V ) |
8 |
6 7
|
eqeltrid |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 × { 𝑦 } ) ∈ V ) |
9 |
8
|
ralrimivw |
⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑦 ∈ 𝐵 ( 𝐴 × { 𝑦 } ) ∈ V ) |
10 |
|
iunexg |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐴 × { 𝑦 } ) ∈ V ) → ∪ 𝑦 ∈ 𝐵 ( 𝐴 × { 𝑦 } ) ∈ V ) |
11 |
5 9 10
|
syl2anr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∪ 𝑦 ∈ 𝐵 ( 𝐴 × { 𝑦 } ) ∈ V ) |
12 |
4 11
|
eqeltrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 × 𝐵 ) ∈ V ) |