Metamath Proof Explorer


Theorem xpexgALT

Description: Alternate proof of xpexg requiring Replacement ( ax-rep ) but not Power Set ( ax-pow ). (Contributed by Mario Carneiro, 20-May-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion xpexgALT ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 × 𝐵 ) ∈ V )

Proof

Step Hyp Ref Expression
1 iunid 𝑦𝐵 { 𝑦 } = 𝐵
2 1 xpeq2i ( 𝐴 × 𝑦𝐵 { 𝑦 } ) = ( 𝐴 × 𝐵 )
3 xpiundi ( 𝐴 × 𝑦𝐵 { 𝑦 } ) = 𝑦𝐵 ( 𝐴 × { 𝑦 } )
4 2 3 eqtr3i ( 𝐴 × 𝐵 ) = 𝑦𝐵 ( 𝐴 × { 𝑦 } )
5 id ( 𝐵𝑊𝐵𝑊 )
6 fconstmpt ( 𝐴 × { 𝑦 } ) = ( 𝑥𝐴𝑦 )
7 mptexg ( 𝐴𝑉 → ( 𝑥𝐴𝑦 ) ∈ V )
8 6 7 eqeltrid ( 𝐴𝑉 → ( 𝐴 × { 𝑦 } ) ∈ V )
9 8 ralrimivw ( 𝐴𝑉 → ∀ 𝑦𝐵 ( 𝐴 × { 𝑦 } ) ∈ V )
10 iunexg ( ( 𝐵𝑊 ∧ ∀ 𝑦𝐵 ( 𝐴 × { 𝑦 } ) ∈ V ) → 𝑦𝐵 ( 𝐴 × { 𝑦 } ) ∈ V )
11 5 9 10 syl2anr ( ( 𝐴𝑉𝐵𝑊 ) → 𝑦𝐵 ( 𝐴 × { 𝑦 } ) ∈ V )
12 4 11 eqeltrid ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 × 𝐵 ) ∈ V )