| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 2 |  | eleq1 | ⊢ ( 𝐴  =  ∅  →  ( 𝐴  ∈  V  ↔  ∅  ∈  V ) ) | 
						
							| 3 | 1 2 | mpbiri | ⊢ ( 𝐴  =  ∅  →  𝐴  ∈  V ) | 
						
							| 4 | 3 | pm2.24d | ⊢ ( 𝐴  =  ∅  →  ( ¬  𝐴  ∈  V  →  𝐵  ∈  V ) ) | 
						
							| 5 | 4 | a1d | ⊢ ( 𝐴  =  ∅  →  ( ( 𝐴  ×  𝐵 )  ∈  𝐶  →  ( ¬  𝐴  ∈  V  →  𝐵  ∈  V ) ) ) | 
						
							| 6 |  | rnexg | ⊢ ( ( 𝐴  ×  𝐵 )  ∈  𝐶  →  ran  ( 𝐴  ×  𝐵 )  ∈  V ) | 
						
							| 7 |  | rnxp | ⊢ ( 𝐴  ≠  ∅  →  ran  ( 𝐴  ×  𝐵 )  =  𝐵 ) | 
						
							| 8 | 7 | eleq1d | ⊢ ( 𝐴  ≠  ∅  →  ( ran  ( 𝐴  ×  𝐵 )  ∈  V  ↔  𝐵  ∈  V ) ) | 
						
							| 9 | 6 8 | imbitrid | ⊢ ( 𝐴  ≠  ∅  →  ( ( 𝐴  ×  𝐵 )  ∈  𝐶  →  𝐵  ∈  V ) ) | 
						
							| 10 | 9 | a1dd | ⊢ ( 𝐴  ≠  ∅  →  ( ( 𝐴  ×  𝐵 )  ∈  𝐶  →  ( ¬  𝐴  ∈  V  →  𝐵  ∈  V ) ) ) | 
						
							| 11 | 5 10 | pm2.61ine | ⊢ ( ( 𝐴  ×  𝐵 )  ∈  𝐶  →  ( ¬  𝐴  ∈  V  →  𝐵  ∈  V ) ) | 
						
							| 12 | 11 | orrd | ⊢ ( ( 𝐴  ×  𝐵 )  ∈  𝐶  →  ( 𝐴  ∈  V  ∨  𝐵  ∈  V ) ) |