Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
⊢ ∅ ∈ V |
2 |
|
eleq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ∈ V ↔ ∅ ∈ V ) ) |
3 |
1 2
|
mpbiri |
⊢ ( 𝐴 = ∅ → 𝐴 ∈ V ) |
4 |
3
|
pm2.24d |
⊢ ( 𝐴 = ∅ → ( ¬ 𝐴 ∈ V → 𝐵 ∈ V ) ) |
5 |
4
|
a1d |
⊢ ( 𝐴 = ∅ → ( ( 𝐴 × 𝐵 ) ∈ 𝐶 → ( ¬ 𝐴 ∈ V → 𝐵 ∈ V ) ) ) |
6 |
|
rnexg |
⊢ ( ( 𝐴 × 𝐵 ) ∈ 𝐶 → ran ( 𝐴 × 𝐵 ) ∈ V ) |
7 |
|
rnxp |
⊢ ( 𝐴 ≠ ∅ → ran ( 𝐴 × 𝐵 ) = 𝐵 ) |
8 |
7
|
eleq1d |
⊢ ( 𝐴 ≠ ∅ → ( ran ( 𝐴 × 𝐵 ) ∈ V ↔ 𝐵 ∈ V ) ) |
9 |
6 8
|
syl5ib |
⊢ ( 𝐴 ≠ ∅ → ( ( 𝐴 × 𝐵 ) ∈ 𝐶 → 𝐵 ∈ V ) ) |
10 |
9
|
a1dd |
⊢ ( 𝐴 ≠ ∅ → ( ( 𝐴 × 𝐵 ) ∈ 𝐶 → ( ¬ 𝐴 ∈ V → 𝐵 ∈ V ) ) ) |
11 |
5 10
|
pm2.61ine |
⊢ ( ( 𝐴 × 𝐵 ) ∈ 𝐶 → ( ¬ 𝐴 ∈ V → 𝐵 ∈ V ) ) |
12 |
11
|
orrd |
⊢ ( ( 𝐴 × 𝐵 ) ∈ 𝐶 → ( 𝐴 ∈ V ∨ 𝐵 ∈ V ) ) |