Metamath Proof Explorer


Theorem xpexr

Description: If a Cartesian product is a set, one of its components must be a set. (Contributed by NM, 27-Aug-2006)

Ref Expression
Assertion xpexr ( ( 𝐴 × 𝐵 ) ∈ 𝐶 → ( 𝐴 ∈ V ∨ 𝐵 ∈ V ) )

Proof

Step Hyp Ref Expression
1 0ex ∅ ∈ V
2 eleq1 ( 𝐴 = ∅ → ( 𝐴 ∈ V ↔ ∅ ∈ V ) )
3 1 2 mpbiri ( 𝐴 = ∅ → 𝐴 ∈ V )
4 3 pm2.24d ( 𝐴 = ∅ → ( ¬ 𝐴 ∈ V → 𝐵 ∈ V ) )
5 4 a1d ( 𝐴 = ∅ → ( ( 𝐴 × 𝐵 ) ∈ 𝐶 → ( ¬ 𝐴 ∈ V → 𝐵 ∈ V ) ) )
6 rnexg ( ( 𝐴 × 𝐵 ) ∈ 𝐶 → ran ( 𝐴 × 𝐵 ) ∈ V )
7 rnxp ( 𝐴 ≠ ∅ → ran ( 𝐴 × 𝐵 ) = 𝐵 )
8 7 eleq1d ( 𝐴 ≠ ∅ → ( ran ( 𝐴 × 𝐵 ) ∈ V ↔ 𝐵 ∈ V ) )
9 6 8 syl5ib ( 𝐴 ≠ ∅ → ( ( 𝐴 × 𝐵 ) ∈ 𝐶𝐵 ∈ V ) )
10 9 a1dd ( 𝐴 ≠ ∅ → ( ( 𝐴 × 𝐵 ) ∈ 𝐶 → ( ¬ 𝐴 ∈ V → 𝐵 ∈ V ) ) )
11 5 10 pm2.61ine ( ( 𝐴 × 𝐵 ) ∈ 𝐶 → ( ¬ 𝐴 ∈ V → 𝐵 ∈ V ) )
12 11 orrd ( ( 𝐴 × 𝐵 ) ∈ 𝐶 → ( 𝐴 ∈ V ∨ 𝐵 ∈ V ) )