Step |
Hyp |
Ref |
Expression |
1 |
|
xpnz |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ↔ ( 𝐴 × 𝐵 ) ≠ ∅ ) |
2 |
|
dmxp |
⊢ ( 𝐵 ≠ ∅ → dom ( 𝐴 × 𝐵 ) = 𝐴 ) |
3 |
2
|
adantl |
⊢ ( ( ( 𝐴 × 𝐵 ) ∈ 𝐶 ∧ 𝐵 ≠ ∅ ) → dom ( 𝐴 × 𝐵 ) = 𝐴 ) |
4 |
|
dmexg |
⊢ ( ( 𝐴 × 𝐵 ) ∈ 𝐶 → dom ( 𝐴 × 𝐵 ) ∈ V ) |
5 |
4
|
adantr |
⊢ ( ( ( 𝐴 × 𝐵 ) ∈ 𝐶 ∧ 𝐵 ≠ ∅ ) → dom ( 𝐴 × 𝐵 ) ∈ V ) |
6 |
3 5
|
eqeltrrd |
⊢ ( ( ( 𝐴 × 𝐵 ) ∈ 𝐶 ∧ 𝐵 ≠ ∅ ) → 𝐴 ∈ V ) |
7 |
|
rnxp |
⊢ ( 𝐴 ≠ ∅ → ran ( 𝐴 × 𝐵 ) = 𝐵 ) |
8 |
7
|
adantl |
⊢ ( ( ( 𝐴 × 𝐵 ) ∈ 𝐶 ∧ 𝐴 ≠ ∅ ) → ran ( 𝐴 × 𝐵 ) = 𝐵 ) |
9 |
|
rnexg |
⊢ ( ( 𝐴 × 𝐵 ) ∈ 𝐶 → ran ( 𝐴 × 𝐵 ) ∈ V ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝐴 × 𝐵 ) ∈ 𝐶 ∧ 𝐴 ≠ ∅ ) → ran ( 𝐴 × 𝐵 ) ∈ V ) |
11 |
8 10
|
eqeltrrd |
⊢ ( ( ( 𝐴 × 𝐵 ) ∈ 𝐶 ∧ 𝐴 ≠ ∅ ) → 𝐵 ∈ V ) |
12 |
6 11
|
anim12dan |
⊢ ( ( ( 𝐴 × 𝐵 ) ∈ 𝐶 ∧ ( 𝐵 ≠ ∅ ∧ 𝐴 ≠ ∅ ) ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
13 |
12
|
ancom2s |
⊢ ( ( ( 𝐴 × 𝐵 ) ∈ 𝐶 ∧ ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
14 |
1 13
|
sylan2br |
⊢ ( ( ( 𝐴 × 𝐵 ) ∈ 𝐶 ∧ ( 𝐴 × 𝐵 ) ≠ ∅ ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |