| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xpf1o.1 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝑋 ) : 𝐴 –1-1-onto→ 𝐵 ) | 
						
							| 2 |  | xpf1o.2 | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐶  ↦  𝑌 ) : 𝐶 –1-1-onto→ 𝐷 ) | 
						
							| 3 |  | xp1st | ⊢ ( 𝑢  ∈  ( 𝐴  ×  𝐶 )  →  ( 1st  ‘ 𝑢 )  ∈  𝐴 ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝐴  ×  𝐶 ) )  →  ( 1st  ‘ 𝑢 )  ∈  𝐴 ) | 
						
							| 5 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  𝑋 )  =  ( 𝑥  ∈  𝐴  ↦  𝑋 ) | 
						
							| 6 | 5 | f1ompt | ⊢ ( ( 𝑥  ∈  𝐴  ↦  𝑋 ) : 𝐴 –1-1-onto→ 𝐵  ↔  ( ∀ 𝑥  ∈  𝐴 𝑋  ∈  𝐵  ∧  ∀ 𝑧  ∈  𝐵 ∃! 𝑥  ∈  𝐴 𝑧  =  𝑋 ) ) | 
						
							| 7 | 1 6 | sylib | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝐴 𝑋  ∈  𝐵  ∧  ∀ 𝑧  ∈  𝐵 ∃! 𝑥  ∈  𝐴 𝑧  =  𝑋 ) ) | 
						
							| 8 | 7 | simpld | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 𝑋  ∈  𝐵 ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝐴  ×  𝐶 ) )  →  ∀ 𝑥  ∈  𝐴 𝑋  ∈  𝐵 ) | 
						
							| 10 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋 | 
						
							| 11 | 10 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋  ∈  𝐵 | 
						
							| 12 |  | csbeq1a | ⊢ ( 𝑥  =  ( 1st  ‘ 𝑢 )  →  𝑋  =  ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋 ) | 
						
							| 13 | 12 | eleq1d | ⊢ ( 𝑥  =  ( 1st  ‘ 𝑢 )  →  ( 𝑋  ∈  𝐵  ↔  ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋  ∈  𝐵 ) ) | 
						
							| 14 | 11 13 | rspc | ⊢ ( ( 1st  ‘ 𝑢 )  ∈  𝐴  →  ( ∀ 𝑥  ∈  𝐴 𝑋  ∈  𝐵  →  ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋  ∈  𝐵 ) ) | 
						
							| 15 | 4 9 14 | sylc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝐴  ×  𝐶 ) )  →  ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋  ∈  𝐵 ) | 
						
							| 16 |  | xp2nd | ⊢ ( 𝑢  ∈  ( 𝐴  ×  𝐶 )  →  ( 2nd  ‘ 𝑢 )  ∈  𝐶 ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝐴  ×  𝐶 ) )  →  ( 2nd  ‘ 𝑢 )  ∈  𝐶 ) | 
						
							| 18 |  | eqid | ⊢ ( 𝑦  ∈  𝐶  ↦  𝑌 )  =  ( 𝑦  ∈  𝐶  ↦  𝑌 ) | 
						
							| 19 | 18 | f1ompt | ⊢ ( ( 𝑦  ∈  𝐶  ↦  𝑌 ) : 𝐶 –1-1-onto→ 𝐷  ↔  ( ∀ 𝑦  ∈  𝐶 𝑌  ∈  𝐷  ∧  ∀ 𝑤  ∈  𝐷 ∃! 𝑦  ∈  𝐶 𝑤  =  𝑌 ) ) | 
						
							| 20 | 2 19 | sylib | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  𝐶 𝑌  ∈  𝐷  ∧  ∀ 𝑤  ∈  𝐷 ∃! 𝑦  ∈  𝐶 𝑤  =  𝑌 ) ) | 
						
							| 21 | 20 | simpld | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝐶 𝑌  ∈  𝐷 ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝐴  ×  𝐶 ) )  →  ∀ 𝑦  ∈  𝐶 𝑌  ∈  𝐷 ) | 
						
							| 23 |  | nfcsb1v | ⊢ Ⅎ 𝑦 ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌 | 
						
							| 24 | 23 | nfel1 | ⊢ Ⅎ 𝑦 ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌  ∈  𝐷 | 
						
							| 25 |  | csbeq1a | ⊢ ( 𝑦  =  ( 2nd  ‘ 𝑢 )  →  𝑌  =  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌 ) | 
						
							| 26 | 25 | eleq1d | ⊢ ( 𝑦  =  ( 2nd  ‘ 𝑢 )  →  ( 𝑌  ∈  𝐷  ↔  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌  ∈  𝐷 ) ) | 
						
							| 27 | 24 26 | rspc | ⊢ ( ( 2nd  ‘ 𝑢 )  ∈  𝐶  →  ( ∀ 𝑦  ∈  𝐶 𝑌  ∈  𝐷  →  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌  ∈  𝐷 ) ) | 
						
							| 28 | 17 22 27 | sylc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝐴  ×  𝐶 ) )  →  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌  ∈  𝐷 ) | 
						
							| 29 | 15 28 | opelxpd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝐴  ×  𝐶 ) )  →  〈 ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋 ,  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌 〉  ∈  ( 𝐵  ×  𝐷 ) ) | 
						
							| 30 | 29 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑢  ∈  ( 𝐴  ×  𝐶 ) 〈 ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋 ,  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌 〉  ∈  ( 𝐵  ×  𝐷 ) ) | 
						
							| 31 | 7 | simprd | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝐵 ∃! 𝑥  ∈  𝐴 𝑧  =  𝑋 ) | 
						
							| 32 | 31 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  ∃! 𝑥  ∈  𝐴 𝑧  =  𝑋 ) | 
						
							| 33 |  | reu6 | ⊢ ( ∃! 𝑥  ∈  𝐴 𝑧  =  𝑋  ↔  ∃ 𝑠  ∈  𝐴 ∀ 𝑥  ∈  𝐴 ( 𝑧  =  𝑋  ↔  𝑥  =  𝑠 ) ) | 
						
							| 34 | 32 33 | sylib | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  ∃ 𝑠  ∈  𝐴 ∀ 𝑥  ∈  𝐴 ( 𝑧  =  𝑋  ↔  𝑥  =  𝑠 ) ) | 
						
							| 35 | 20 | simprd | ⊢ ( 𝜑  →  ∀ 𝑤  ∈  𝐷 ∃! 𝑦  ∈  𝐶 𝑤  =  𝑌 ) | 
						
							| 36 | 35 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐷 )  →  ∃! 𝑦  ∈  𝐶 𝑤  =  𝑌 ) | 
						
							| 37 |  | reu6 | ⊢ ( ∃! 𝑦  ∈  𝐶 𝑤  =  𝑌  ↔  ∃ 𝑡  ∈  𝐶 ∀ 𝑦  ∈  𝐶 ( 𝑤  =  𝑌  ↔  𝑦  =  𝑡 ) ) | 
						
							| 38 | 36 37 | sylib | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐷 )  →  ∃ 𝑡  ∈  𝐶 ∀ 𝑦  ∈  𝐶 ( 𝑤  =  𝑌  ↔  𝑦  =  𝑡 ) ) | 
						
							| 39 | 34 38 | anim12dan | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐷 ) )  →  ( ∃ 𝑠  ∈  𝐴 ∀ 𝑥  ∈  𝐴 ( 𝑧  =  𝑋  ↔  𝑥  =  𝑠 )  ∧  ∃ 𝑡  ∈  𝐶 ∀ 𝑦  ∈  𝐶 ( 𝑤  =  𝑌  ↔  𝑦  =  𝑡 ) ) ) | 
						
							| 40 |  | reeanv | ⊢ ( ∃ 𝑠  ∈  𝐴 ∃ 𝑡  ∈  𝐶 ( ∀ 𝑥  ∈  𝐴 ( 𝑧  =  𝑋  ↔  𝑥  =  𝑠 )  ∧  ∀ 𝑦  ∈  𝐶 ( 𝑤  =  𝑌  ↔  𝑦  =  𝑡 ) )  ↔  ( ∃ 𝑠  ∈  𝐴 ∀ 𝑥  ∈  𝐴 ( 𝑧  =  𝑋  ↔  𝑥  =  𝑠 )  ∧  ∃ 𝑡  ∈  𝐶 ∀ 𝑦  ∈  𝐶 ( 𝑤  =  𝑌  ↔  𝑦  =  𝑡 ) ) ) | 
						
							| 41 |  | pm4.38 | ⊢ ( ( ( 𝑧  =  𝑋  ↔  𝑥  =  𝑠 )  ∧  ( 𝑤  =  𝑌  ↔  𝑦  =  𝑡 ) )  →  ( ( 𝑧  =  𝑋  ∧  𝑤  =  𝑌 )  ↔  ( 𝑥  =  𝑠  ∧  𝑦  =  𝑡 ) ) ) | 
						
							| 42 | 41 | ex | ⊢ ( ( 𝑧  =  𝑋  ↔  𝑥  =  𝑠 )  →  ( ( 𝑤  =  𝑌  ↔  𝑦  =  𝑡 )  →  ( ( 𝑧  =  𝑋  ∧  𝑤  =  𝑌 )  ↔  ( 𝑥  =  𝑠  ∧  𝑦  =  𝑡 ) ) ) ) | 
						
							| 43 | 42 | ralimdv | ⊢ ( ( 𝑧  =  𝑋  ↔  𝑥  =  𝑠 )  →  ( ∀ 𝑦  ∈  𝐶 ( 𝑤  =  𝑌  ↔  𝑦  =  𝑡 )  →  ∀ 𝑦  ∈  𝐶 ( ( 𝑧  =  𝑋  ∧  𝑤  =  𝑌 )  ↔  ( 𝑥  =  𝑠  ∧  𝑦  =  𝑡 ) ) ) ) | 
						
							| 44 | 43 | com12 | ⊢ ( ∀ 𝑦  ∈  𝐶 ( 𝑤  =  𝑌  ↔  𝑦  =  𝑡 )  →  ( ( 𝑧  =  𝑋  ↔  𝑥  =  𝑠 )  →  ∀ 𝑦  ∈  𝐶 ( ( 𝑧  =  𝑋  ∧  𝑤  =  𝑌 )  ↔  ( 𝑥  =  𝑠  ∧  𝑦  =  𝑡 ) ) ) ) | 
						
							| 45 | 44 | ralimdv | ⊢ ( ∀ 𝑦  ∈  𝐶 ( 𝑤  =  𝑌  ↔  𝑦  =  𝑡 )  →  ( ∀ 𝑥  ∈  𝐴 ( 𝑧  =  𝑋  ↔  𝑥  =  𝑠 )  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐶 ( ( 𝑧  =  𝑋  ∧  𝑤  =  𝑌 )  ↔  ( 𝑥  =  𝑠  ∧  𝑦  =  𝑡 ) ) ) ) | 
						
							| 46 | 45 | impcom | ⊢ ( ( ∀ 𝑥  ∈  𝐴 ( 𝑧  =  𝑋  ↔  𝑥  =  𝑠 )  ∧  ∀ 𝑦  ∈  𝐶 ( 𝑤  =  𝑌  ↔  𝑦  =  𝑡 ) )  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐶 ( ( 𝑧  =  𝑋  ∧  𝑤  =  𝑌 )  ↔  ( 𝑥  =  𝑠  ∧  𝑦  =  𝑡 ) ) ) | 
						
							| 47 | 46 | reximi | ⊢ ( ∃ 𝑡  ∈  𝐶 ( ∀ 𝑥  ∈  𝐴 ( 𝑧  =  𝑋  ↔  𝑥  =  𝑠 )  ∧  ∀ 𝑦  ∈  𝐶 ( 𝑤  =  𝑌  ↔  𝑦  =  𝑡 ) )  →  ∃ 𝑡  ∈  𝐶 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐶 ( ( 𝑧  =  𝑋  ∧  𝑤  =  𝑌 )  ↔  ( 𝑥  =  𝑠  ∧  𝑦  =  𝑡 ) ) ) | 
						
							| 48 | 47 | reximi | ⊢ ( ∃ 𝑠  ∈  𝐴 ∃ 𝑡  ∈  𝐶 ( ∀ 𝑥  ∈  𝐴 ( 𝑧  =  𝑋  ↔  𝑥  =  𝑠 )  ∧  ∀ 𝑦  ∈  𝐶 ( 𝑤  =  𝑌  ↔  𝑦  =  𝑡 ) )  →  ∃ 𝑠  ∈  𝐴 ∃ 𝑡  ∈  𝐶 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐶 ( ( 𝑧  =  𝑋  ∧  𝑤  =  𝑌 )  ↔  ( 𝑥  =  𝑠  ∧  𝑦  =  𝑡 ) ) ) | 
						
							| 49 | 40 48 | sylbir | ⊢ ( ( ∃ 𝑠  ∈  𝐴 ∀ 𝑥  ∈  𝐴 ( 𝑧  =  𝑋  ↔  𝑥  =  𝑠 )  ∧  ∃ 𝑡  ∈  𝐶 ∀ 𝑦  ∈  𝐶 ( 𝑤  =  𝑌  ↔  𝑦  =  𝑡 ) )  →  ∃ 𝑠  ∈  𝐴 ∃ 𝑡  ∈  𝐶 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐶 ( ( 𝑧  =  𝑋  ∧  𝑤  =  𝑌 )  ↔  ( 𝑥  =  𝑠  ∧  𝑦  =  𝑡 ) ) ) | 
						
							| 50 | 39 49 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐷 ) )  →  ∃ 𝑠  ∈  𝐴 ∃ 𝑡  ∈  𝐶 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐶 ( ( 𝑧  =  𝑋  ∧  𝑤  =  𝑌 )  ↔  ( 𝑥  =  𝑠  ∧  𝑦  =  𝑡 ) ) ) | 
						
							| 51 |  | vex | ⊢ 𝑠  ∈  V | 
						
							| 52 |  | vex | ⊢ 𝑡  ∈  V | 
						
							| 53 | 51 52 | op1std | ⊢ ( 𝑢  =  〈 𝑠 ,  𝑡 〉  →  ( 1st  ‘ 𝑢 )  =  𝑠 ) | 
						
							| 54 | 53 | csbeq1d | ⊢ ( 𝑢  =  〈 𝑠 ,  𝑡 〉  →  ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋  =  ⦋ 𝑠  /  𝑥 ⦌ 𝑋 ) | 
						
							| 55 | 54 | eqeq2d | ⊢ ( 𝑢  =  〈 𝑠 ,  𝑡 〉  →  ( 𝑧  =  ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋  ↔  𝑧  =  ⦋ 𝑠  /  𝑥 ⦌ 𝑋 ) ) | 
						
							| 56 | 51 52 | op2ndd | ⊢ ( 𝑢  =  〈 𝑠 ,  𝑡 〉  →  ( 2nd  ‘ 𝑢 )  =  𝑡 ) | 
						
							| 57 | 56 | csbeq1d | ⊢ ( 𝑢  =  〈 𝑠 ,  𝑡 〉  →  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌  =  ⦋ 𝑡  /  𝑦 ⦌ 𝑌 ) | 
						
							| 58 | 57 | eqeq2d | ⊢ ( 𝑢  =  〈 𝑠 ,  𝑡 〉  →  ( 𝑤  =  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌  ↔  𝑤  =  ⦋ 𝑡  /  𝑦 ⦌ 𝑌 ) ) | 
						
							| 59 | 55 58 | anbi12d | ⊢ ( 𝑢  =  〈 𝑠 ,  𝑡 〉  →  ( ( 𝑧  =  ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋  ∧  𝑤  =  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌 )  ↔  ( 𝑧  =  ⦋ 𝑠  /  𝑥 ⦌ 𝑋  ∧  𝑤  =  ⦋ 𝑡  /  𝑦 ⦌ 𝑌 ) ) ) | 
						
							| 60 |  | eqeq1 | ⊢ ( 𝑢  =  〈 𝑠 ,  𝑡 〉  →  ( 𝑢  =  𝑣  ↔  〈 𝑠 ,  𝑡 〉  =  𝑣 ) ) | 
						
							| 61 | 59 60 | bibi12d | ⊢ ( 𝑢  =  〈 𝑠 ,  𝑡 〉  →  ( ( ( 𝑧  =  ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋  ∧  𝑤  =  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌 )  ↔  𝑢  =  𝑣 )  ↔  ( ( 𝑧  =  ⦋ 𝑠  /  𝑥 ⦌ 𝑋  ∧  𝑤  =  ⦋ 𝑡  /  𝑦 ⦌ 𝑌 )  ↔  〈 𝑠 ,  𝑡 〉  =  𝑣 ) ) ) | 
						
							| 62 | 61 | ralxp | ⊢ ( ∀ 𝑢  ∈  ( 𝐴  ×  𝐶 ) ( ( 𝑧  =  ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋  ∧  𝑤  =  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌 )  ↔  𝑢  =  𝑣 )  ↔  ∀ 𝑠  ∈  𝐴 ∀ 𝑡  ∈  𝐶 ( ( 𝑧  =  ⦋ 𝑠  /  𝑥 ⦌ 𝑋  ∧  𝑤  =  ⦋ 𝑡  /  𝑦 ⦌ 𝑌 )  ↔  〈 𝑠 ,  𝑡 〉  =  𝑣 ) ) | 
						
							| 63 |  | nfv | ⊢ Ⅎ 𝑠 ∀ 𝑦  ∈  𝐶 ( ( 𝑧  =  𝑋  ∧  𝑤  =  𝑌 )  ↔  〈 𝑥 ,  𝑦 〉  =  𝑣 ) | 
						
							| 64 |  | nfcv | ⊢ Ⅎ 𝑥 𝐶 | 
						
							| 65 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑠  /  𝑥 ⦌ 𝑋 | 
						
							| 66 | 65 | nfeq2 | ⊢ Ⅎ 𝑥 𝑧  =  ⦋ 𝑠  /  𝑥 ⦌ 𝑋 | 
						
							| 67 |  | nfv | ⊢ Ⅎ 𝑥 𝑤  =  ⦋ 𝑡  /  𝑦 ⦌ 𝑌 | 
						
							| 68 | 66 67 | nfan | ⊢ Ⅎ 𝑥 ( 𝑧  =  ⦋ 𝑠  /  𝑥 ⦌ 𝑋  ∧  𝑤  =  ⦋ 𝑡  /  𝑦 ⦌ 𝑌 ) | 
						
							| 69 |  | nfv | ⊢ Ⅎ 𝑥 〈 𝑠 ,  𝑡 〉  =  𝑣 | 
						
							| 70 | 68 69 | nfbi | ⊢ Ⅎ 𝑥 ( ( 𝑧  =  ⦋ 𝑠  /  𝑥 ⦌ 𝑋  ∧  𝑤  =  ⦋ 𝑡  /  𝑦 ⦌ 𝑌 )  ↔  〈 𝑠 ,  𝑡 〉  =  𝑣 ) | 
						
							| 71 | 64 70 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑡  ∈  𝐶 ( ( 𝑧  =  ⦋ 𝑠  /  𝑥 ⦌ 𝑋  ∧  𝑤  =  ⦋ 𝑡  /  𝑦 ⦌ 𝑌 )  ↔  〈 𝑠 ,  𝑡 〉  =  𝑣 ) | 
						
							| 72 |  | nfv | ⊢ Ⅎ 𝑡 ( ( 𝑧  =  𝑋  ∧  𝑤  =  𝑌 )  ↔  〈 𝑥 ,  𝑦 〉  =  𝑣 ) | 
						
							| 73 |  | nfv | ⊢ Ⅎ 𝑦 𝑧  =  𝑋 | 
						
							| 74 |  | nfcsb1v | ⊢ Ⅎ 𝑦 ⦋ 𝑡  /  𝑦 ⦌ 𝑌 | 
						
							| 75 | 74 | nfeq2 | ⊢ Ⅎ 𝑦 𝑤  =  ⦋ 𝑡  /  𝑦 ⦌ 𝑌 | 
						
							| 76 | 73 75 | nfan | ⊢ Ⅎ 𝑦 ( 𝑧  =  𝑋  ∧  𝑤  =  ⦋ 𝑡  /  𝑦 ⦌ 𝑌 ) | 
						
							| 77 |  | nfv | ⊢ Ⅎ 𝑦 〈 𝑥 ,  𝑡 〉  =  𝑣 | 
						
							| 78 | 76 77 | nfbi | ⊢ Ⅎ 𝑦 ( ( 𝑧  =  𝑋  ∧  𝑤  =  ⦋ 𝑡  /  𝑦 ⦌ 𝑌 )  ↔  〈 𝑥 ,  𝑡 〉  =  𝑣 ) | 
						
							| 79 |  | csbeq1a | ⊢ ( 𝑦  =  𝑡  →  𝑌  =  ⦋ 𝑡  /  𝑦 ⦌ 𝑌 ) | 
						
							| 80 | 79 | eqeq2d | ⊢ ( 𝑦  =  𝑡  →  ( 𝑤  =  𝑌  ↔  𝑤  =  ⦋ 𝑡  /  𝑦 ⦌ 𝑌 ) ) | 
						
							| 81 | 80 | anbi2d | ⊢ ( 𝑦  =  𝑡  →  ( ( 𝑧  =  𝑋  ∧  𝑤  =  𝑌 )  ↔  ( 𝑧  =  𝑋  ∧  𝑤  =  ⦋ 𝑡  /  𝑦 ⦌ 𝑌 ) ) ) | 
						
							| 82 |  | opeq2 | ⊢ ( 𝑦  =  𝑡  →  〈 𝑥 ,  𝑦 〉  =  〈 𝑥 ,  𝑡 〉 ) | 
						
							| 83 | 82 | eqeq1d | ⊢ ( 𝑦  =  𝑡  →  ( 〈 𝑥 ,  𝑦 〉  =  𝑣  ↔  〈 𝑥 ,  𝑡 〉  =  𝑣 ) ) | 
						
							| 84 | 81 83 | bibi12d | ⊢ ( 𝑦  =  𝑡  →  ( ( ( 𝑧  =  𝑋  ∧  𝑤  =  𝑌 )  ↔  〈 𝑥 ,  𝑦 〉  =  𝑣 )  ↔  ( ( 𝑧  =  𝑋  ∧  𝑤  =  ⦋ 𝑡  /  𝑦 ⦌ 𝑌 )  ↔  〈 𝑥 ,  𝑡 〉  =  𝑣 ) ) ) | 
						
							| 85 | 72 78 84 | cbvralw | ⊢ ( ∀ 𝑦  ∈  𝐶 ( ( 𝑧  =  𝑋  ∧  𝑤  =  𝑌 )  ↔  〈 𝑥 ,  𝑦 〉  =  𝑣 )  ↔  ∀ 𝑡  ∈  𝐶 ( ( 𝑧  =  𝑋  ∧  𝑤  =  ⦋ 𝑡  /  𝑦 ⦌ 𝑌 )  ↔  〈 𝑥 ,  𝑡 〉  =  𝑣 ) ) | 
						
							| 86 |  | csbeq1a | ⊢ ( 𝑥  =  𝑠  →  𝑋  =  ⦋ 𝑠  /  𝑥 ⦌ 𝑋 ) | 
						
							| 87 | 86 | eqeq2d | ⊢ ( 𝑥  =  𝑠  →  ( 𝑧  =  𝑋  ↔  𝑧  =  ⦋ 𝑠  /  𝑥 ⦌ 𝑋 ) ) | 
						
							| 88 | 87 | anbi1d | ⊢ ( 𝑥  =  𝑠  →  ( ( 𝑧  =  𝑋  ∧  𝑤  =  ⦋ 𝑡  /  𝑦 ⦌ 𝑌 )  ↔  ( 𝑧  =  ⦋ 𝑠  /  𝑥 ⦌ 𝑋  ∧  𝑤  =  ⦋ 𝑡  /  𝑦 ⦌ 𝑌 ) ) ) | 
						
							| 89 |  | opeq1 | ⊢ ( 𝑥  =  𝑠  →  〈 𝑥 ,  𝑡 〉  =  〈 𝑠 ,  𝑡 〉 ) | 
						
							| 90 | 89 | eqeq1d | ⊢ ( 𝑥  =  𝑠  →  ( 〈 𝑥 ,  𝑡 〉  =  𝑣  ↔  〈 𝑠 ,  𝑡 〉  =  𝑣 ) ) | 
						
							| 91 | 88 90 | bibi12d | ⊢ ( 𝑥  =  𝑠  →  ( ( ( 𝑧  =  𝑋  ∧  𝑤  =  ⦋ 𝑡  /  𝑦 ⦌ 𝑌 )  ↔  〈 𝑥 ,  𝑡 〉  =  𝑣 )  ↔  ( ( 𝑧  =  ⦋ 𝑠  /  𝑥 ⦌ 𝑋  ∧  𝑤  =  ⦋ 𝑡  /  𝑦 ⦌ 𝑌 )  ↔  〈 𝑠 ,  𝑡 〉  =  𝑣 ) ) ) | 
						
							| 92 | 91 | ralbidv | ⊢ ( 𝑥  =  𝑠  →  ( ∀ 𝑡  ∈  𝐶 ( ( 𝑧  =  𝑋  ∧  𝑤  =  ⦋ 𝑡  /  𝑦 ⦌ 𝑌 )  ↔  〈 𝑥 ,  𝑡 〉  =  𝑣 )  ↔  ∀ 𝑡  ∈  𝐶 ( ( 𝑧  =  ⦋ 𝑠  /  𝑥 ⦌ 𝑋  ∧  𝑤  =  ⦋ 𝑡  /  𝑦 ⦌ 𝑌 )  ↔  〈 𝑠 ,  𝑡 〉  =  𝑣 ) ) ) | 
						
							| 93 | 85 92 | bitrid | ⊢ ( 𝑥  =  𝑠  →  ( ∀ 𝑦  ∈  𝐶 ( ( 𝑧  =  𝑋  ∧  𝑤  =  𝑌 )  ↔  〈 𝑥 ,  𝑦 〉  =  𝑣 )  ↔  ∀ 𝑡  ∈  𝐶 ( ( 𝑧  =  ⦋ 𝑠  /  𝑥 ⦌ 𝑋  ∧  𝑤  =  ⦋ 𝑡  /  𝑦 ⦌ 𝑌 )  ↔  〈 𝑠 ,  𝑡 〉  =  𝑣 ) ) ) | 
						
							| 94 | 63 71 93 | cbvralw | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐶 ( ( 𝑧  =  𝑋  ∧  𝑤  =  𝑌 )  ↔  〈 𝑥 ,  𝑦 〉  =  𝑣 )  ↔  ∀ 𝑠  ∈  𝐴 ∀ 𝑡  ∈  𝐶 ( ( 𝑧  =  ⦋ 𝑠  /  𝑥 ⦌ 𝑋  ∧  𝑤  =  ⦋ 𝑡  /  𝑦 ⦌ 𝑌 )  ↔  〈 𝑠 ,  𝑡 〉  =  𝑣 ) ) | 
						
							| 95 | 62 94 | bitr4i | ⊢ ( ∀ 𝑢  ∈  ( 𝐴  ×  𝐶 ) ( ( 𝑧  =  ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋  ∧  𝑤  =  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌 )  ↔  𝑢  =  𝑣 )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐶 ( ( 𝑧  =  𝑋  ∧  𝑤  =  𝑌 )  ↔  〈 𝑥 ,  𝑦 〉  =  𝑣 ) ) | 
						
							| 96 |  | eqeq2 | ⊢ ( 𝑣  =  〈 𝑠 ,  𝑡 〉  →  ( 〈 𝑥 ,  𝑦 〉  =  𝑣  ↔  〈 𝑥 ,  𝑦 〉  =  〈 𝑠 ,  𝑡 〉 ) ) | 
						
							| 97 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 98 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 99 | 97 98 | opth | ⊢ ( 〈 𝑥 ,  𝑦 〉  =  〈 𝑠 ,  𝑡 〉  ↔  ( 𝑥  =  𝑠  ∧  𝑦  =  𝑡 ) ) | 
						
							| 100 | 96 99 | bitrdi | ⊢ ( 𝑣  =  〈 𝑠 ,  𝑡 〉  →  ( 〈 𝑥 ,  𝑦 〉  =  𝑣  ↔  ( 𝑥  =  𝑠  ∧  𝑦  =  𝑡 ) ) ) | 
						
							| 101 | 100 | bibi2d | ⊢ ( 𝑣  =  〈 𝑠 ,  𝑡 〉  →  ( ( ( 𝑧  =  𝑋  ∧  𝑤  =  𝑌 )  ↔  〈 𝑥 ,  𝑦 〉  =  𝑣 )  ↔  ( ( 𝑧  =  𝑋  ∧  𝑤  =  𝑌 )  ↔  ( 𝑥  =  𝑠  ∧  𝑦  =  𝑡 ) ) ) ) | 
						
							| 102 | 101 | 2ralbidv | ⊢ ( 𝑣  =  〈 𝑠 ,  𝑡 〉  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐶 ( ( 𝑧  =  𝑋  ∧  𝑤  =  𝑌 )  ↔  〈 𝑥 ,  𝑦 〉  =  𝑣 )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐶 ( ( 𝑧  =  𝑋  ∧  𝑤  =  𝑌 )  ↔  ( 𝑥  =  𝑠  ∧  𝑦  =  𝑡 ) ) ) ) | 
						
							| 103 | 95 102 | bitrid | ⊢ ( 𝑣  =  〈 𝑠 ,  𝑡 〉  →  ( ∀ 𝑢  ∈  ( 𝐴  ×  𝐶 ) ( ( 𝑧  =  ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋  ∧  𝑤  =  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌 )  ↔  𝑢  =  𝑣 )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐶 ( ( 𝑧  =  𝑋  ∧  𝑤  =  𝑌 )  ↔  ( 𝑥  =  𝑠  ∧  𝑦  =  𝑡 ) ) ) ) | 
						
							| 104 | 103 | rexxp | ⊢ ( ∃ 𝑣  ∈  ( 𝐴  ×  𝐶 ) ∀ 𝑢  ∈  ( 𝐴  ×  𝐶 ) ( ( 𝑧  =  ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋  ∧  𝑤  =  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌 )  ↔  𝑢  =  𝑣 )  ↔  ∃ 𝑠  ∈  𝐴 ∃ 𝑡  ∈  𝐶 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐶 ( ( 𝑧  =  𝑋  ∧  𝑤  =  𝑌 )  ↔  ( 𝑥  =  𝑠  ∧  𝑦  =  𝑡 ) ) ) | 
						
							| 105 | 50 104 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐷 ) )  →  ∃ 𝑣  ∈  ( 𝐴  ×  𝐶 ) ∀ 𝑢  ∈  ( 𝐴  ×  𝐶 ) ( ( 𝑧  =  ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋  ∧  𝑤  =  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌 )  ↔  𝑢  =  𝑣 ) ) | 
						
							| 106 |  | reu6 | ⊢ ( ∃! 𝑢  ∈  ( 𝐴  ×  𝐶 ) ( 𝑧  =  ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋  ∧  𝑤  =  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌 )  ↔  ∃ 𝑣  ∈  ( 𝐴  ×  𝐶 ) ∀ 𝑢  ∈  ( 𝐴  ×  𝐶 ) ( ( 𝑧  =  ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋  ∧  𝑤  =  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌 )  ↔  𝑢  =  𝑣 ) ) | 
						
							| 107 | 105 106 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐷 ) )  →  ∃! 𝑢  ∈  ( 𝐴  ×  𝐶 ) ( 𝑧  =  ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋  ∧  𝑤  =  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌 ) ) | 
						
							| 108 | 107 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝐵 ∀ 𝑤  ∈  𝐷 ∃! 𝑢  ∈  ( 𝐴  ×  𝐶 ) ( 𝑧  =  ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋  ∧  𝑤  =  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌 ) ) | 
						
							| 109 |  | eqeq1 | ⊢ ( 𝑣  =  〈 𝑧 ,  𝑤 〉  →  ( 𝑣  =  〈 ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋 ,  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌 〉  ↔  〈 𝑧 ,  𝑤 〉  =  〈 ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋 ,  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌 〉 ) ) | 
						
							| 110 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 111 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 112 | 110 111 | opth | ⊢ ( 〈 𝑧 ,  𝑤 〉  =  〈 ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋 ,  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌 〉  ↔  ( 𝑧  =  ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋  ∧  𝑤  =  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌 ) ) | 
						
							| 113 | 109 112 | bitrdi | ⊢ ( 𝑣  =  〈 𝑧 ,  𝑤 〉  →  ( 𝑣  =  〈 ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋 ,  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌 〉  ↔  ( 𝑧  =  ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋  ∧  𝑤  =  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌 ) ) ) | 
						
							| 114 | 113 | reubidv | ⊢ ( 𝑣  =  〈 𝑧 ,  𝑤 〉  →  ( ∃! 𝑢  ∈  ( 𝐴  ×  𝐶 ) 𝑣  =  〈 ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋 ,  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌 〉  ↔  ∃! 𝑢  ∈  ( 𝐴  ×  𝐶 ) ( 𝑧  =  ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋  ∧  𝑤  =  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌 ) ) ) | 
						
							| 115 | 114 | ralxp | ⊢ ( ∀ 𝑣  ∈  ( 𝐵  ×  𝐷 ) ∃! 𝑢  ∈  ( 𝐴  ×  𝐶 ) 𝑣  =  〈 ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋 ,  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌 〉  ↔  ∀ 𝑧  ∈  𝐵 ∀ 𝑤  ∈  𝐷 ∃! 𝑢  ∈  ( 𝐴  ×  𝐶 ) ( 𝑧  =  ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋  ∧  𝑤  =  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌 ) ) | 
						
							| 116 | 108 115 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑣  ∈  ( 𝐵  ×  𝐷 ) ∃! 𝑢  ∈  ( 𝐴  ×  𝐶 ) 𝑣  =  〈 ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋 ,  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌 〉 ) | 
						
							| 117 |  | nfcv | ⊢ Ⅎ 𝑧 〈 𝑋 ,  𝑌 〉 | 
						
							| 118 |  | nfcv | ⊢ Ⅎ 𝑤 〈 𝑋 ,  𝑌 〉 | 
						
							| 119 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑧  /  𝑥 ⦌ 𝑋 | 
						
							| 120 |  | nfcv | ⊢ Ⅎ 𝑥 ⦋ 𝑤  /  𝑦 ⦌ 𝑌 | 
						
							| 121 | 119 120 | nfop | ⊢ Ⅎ 𝑥 〈 ⦋ 𝑧  /  𝑥 ⦌ 𝑋 ,  ⦋ 𝑤  /  𝑦 ⦌ 𝑌 〉 | 
						
							| 122 |  | nfcv | ⊢ Ⅎ 𝑦 ⦋ 𝑧  /  𝑥 ⦌ 𝑋 | 
						
							| 123 |  | nfcsb1v | ⊢ Ⅎ 𝑦 ⦋ 𝑤  /  𝑦 ⦌ 𝑌 | 
						
							| 124 | 122 123 | nfop | ⊢ Ⅎ 𝑦 〈 ⦋ 𝑧  /  𝑥 ⦌ 𝑋 ,  ⦋ 𝑤  /  𝑦 ⦌ 𝑌 〉 | 
						
							| 125 |  | csbeq1a | ⊢ ( 𝑥  =  𝑧  →  𝑋  =  ⦋ 𝑧  /  𝑥 ⦌ 𝑋 ) | 
						
							| 126 |  | csbeq1a | ⊢ ( 𝑦  =  𝑤  →  𝑌  =  ⦋ 𝑤  /  𝑦 ⦌ 𝑌 ) | 
						
							| 127 |  | opeq12 | ⊢ ( ( 𝑋  =  ⦋ 𝑧  /  𝑥 ⦌ 𝑋  ∧  𝑌  =  ⦋ 𝑤  /  𝑦 ⦌ 𝑌 )  →  〈 𝑋 ,  𝑌 〉  =  〈 ⦋ 𝑧  /  𝑥 ⦌ 𝑋 ,  ⦋ 𝑤  /  𝑦 ⦌ 𝑌 〉 ) | 
						
							| 128 | 125 126 127 | syl2an | ⊢ ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  〈 𝑋 ,  𝑌 〉  =  〈 ⦋ 𝑧  /  𝑥 ⦌ 𝑋 ,  ⦋ 𝑤  /  𝑦 ⦌ 𝑌 〉 ) | 
						
							| 129 | 117 118 121 124 128 | cbvmpo | ⊢ ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐶  ↦  〈 𝑋 ,  𝑌 〉 )  =  ( 𝑧  ∈  𝐴 ,  𝑤  ∈  𝐶  ↦  〈 ⦋ 𝑧  /  𝑥 ⦌ 𝑋 ,  ⦋ 𝑤  /  𝑦 ⦌ 𝑌 〉 ) | 
						
							| 130 | 110 111 | op1std | ⊢ ( 𝑢  =  〈 𝑧 ,  𝑤 〉  →  ( 1st  ‘ 𝑢 )  =  𝑧 ) | 
						
							| 131 | 130 | csbeq1d | ⊢ ( 𝑢  =  〈 𝑧 ,  𝑤 〉  →  ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋  =  ⦋ 𝑧  /  𝑥 ⦌ 𝑋 ) | 
						
							| 132 | 110 111 | op2ndd | ⊢ ( 𝑢  =  〈 𝑧 ,  𝑤 〉  →  ( 2nd  ‘ 𝑢 )  =  𝑤 ) | 
						
							| 133 | 132 | csbeq1d | ⊢ ( 𝑢  =  〈 𝑧 ,  𝑤 〉  →  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌  =  ⦋ 𝑤  /  𝑦 ⦌ 𝑌 ) | 
						
							| 134 | 131 133 | opeq12d | ⊢ ( 𝑢  =  〈 𝑧 ,  𝑤 〉  →  〈 ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋 ,  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌 〉  =  〈 ⦋ 𝑧  /  𝑥 ⦌ 𝑋 ,  ⦋ 𝑤  /  𝑦 ⦌ 𝑌 〉 ) | 
						
							| 135 | 134 | mpompt | ⊢ ( 𝑢  ∈  ( 𝐴  ×  𝐶 )  ↦  〈 ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋 ,  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌 〉 )  =  ( 𝑧  ∈  𝐴 ,  𝑤  ∈  𝐶  ↦  〈 ⦋ 𝑧  /  𝑥 ⦌ 𝑋 ,  ⦋ 𝑤  /  𝑦 ⦌ 𝑌 〉 ) | 
						
							| 136 | 129 135 | eqtr4i | ⊢ ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐶  ↦  〈 𝑋 ,  𝑌 〉 )  =  ( 𝑢  ∈  ( 𝐴  ×  𝐶 )  ↦  〈 ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋 ,  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌 〉 ) | 
						
							| 137 | 136 | f1ompt | ⊢ ( ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐶  ↦  〈 𝑋 ,  𝑌 〉 ) : ( 𝐴  ×  𝐶 ) –1-1-onto→ ( 𝐵  ×  𝐷 )  ↔  ( ∀ 𝑢  ∈  ( 𝐴  ×  𝐶 ) 〈 ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋 ,  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌 〉  ∈  ( 𝐵  ×  𝐷 )  ∧  ∀ 𝑣  ∈  ( 𝐵  ×  𝐷 ) ∃! 𝑢  ∈  ( 𝐴  ×  𝐶 ) 𝑣  =  〈 ⦋ ( 1st  ‘ 𝑢 )  /  𝑥 ⦌ 𝑋 ,  ⦋ ( 2nd  ‘ 𝑢 )  /  𝑦 ⦌ 𝑌 〉 ) ) | 
						
							| 138 | 30 116 137 | sylanbrc | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐶  ↦  〈 𝑋 ,  𝑌 〉 ) : ( 𝐴  ×  𝐶 ) –1-1-onto→ ( 𝐵  ×  𝐷 ) ) |