Step |
Hyp |
Ref |
Expression |
1 |
|
xpf1o.1 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) : 𝐴 –1-1-onto→ 𝐵 ) |
2 |
|
xpf1o.2 |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐶 ↦ 𝑌 ) : 𝐶 –1-1-onto→ 𝐷 ) |
3 |
|
xp1st |
⊢ ( 𝑢 ∈ ( 𝐴 × 𝐶 ) → ( 1st ‘ 𝑢 ) ∈ 𝐴 ) |
4 |
3
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 × 𝐶 ) ) → ( 1st ‘ 𝑢 ) ∈ 𝐴 ) |
5 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) = ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) |
6 |
5
|
f1ompt |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) : 𝐴 –1-1-onto→ 𝐵 ↔ ( ∀ 𝑥 ∈ 𝐴 𝑋 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ∃! 𝑥 ∈ 𝐴 𝑧 = 𝑋 ) ) |
7 |
1 6
|
sylib |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝑋 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ∃! 𝑥 ∈ 𝐴 𝑧 = 𝑋 ) ) |
8 |
7
|
simpld |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑋 ∈ 𝐵 ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 × 𝐶 ) ) → ∀ 𝑥 ∈ 𝐴 𝑋 ∈ 𝐵 ) |
10 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 |
11 |
10
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∈ 𝐵 |
12 |
|
csbeq1a |
⊢ ( 𝑥 = ( 1st ‘ 𝑢 ) → 𝑋 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ) |
13 |
12
|
eleq1d |
⊢ ( 𝑥 = ( 1st ‘ 𝑢 ) → ( 𝑋 ∈ 𝐵 ↔ ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∈ 𝐵 ) ) |
14 |
11 13
|
rspc |
⊢ ( ( 1st ‘ 𝑢 ) ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 𝑋 ∈ 𝐵 → ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∈ 𝐵 ) ) |
15 |
4 9 14
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 × 𝐶 ) ) → ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∈ 𝐵 ) |
16 |
|
xp2nd |
⊢ ( 𝑢 ∈ ( 𝐴 × 𝐶 ) → ( 2nd ‘ 𝑢 ) ∈ 𝐶 ) |
17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 × 𝐶 ) ) → ( 2nd ‘ 𝑢 ) ∈ 𝐶 ) |
18 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐶 ↦ 𝑌 ) = ( 𝑦 ∈ 𝐶 ↦ 𝑌 ) |
19 |
18
|
f1ompt |
⊢ ( ( 𝑦 ∈ 𝐶 ↦ 𝑌 ) : 𝐶 –1-1-onto→ 𝐷 ↔ ( ∀ 𝑦 ∈ 𝐶 𝑌 ∈ 𝐷 ∧ ∀ 𝑤 ∈ 𝐷 ∃! 𝑦 ∈ 𝐶 𝑤 = 𝑌 ) ) |
20 |
2 19
|
sylib |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐶 𝑌 ∈ 𝐷 ∧ ∀ 𝑤 ∈ 𝐷 ∃! 𝑦 ∈ 𝐶 𝑤 = 𝑌 ) ) |
21 |
20
|
simpld |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐶 𝑌 ∈ 𝐷 ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 × 𝐶 ) ) → ∀ 𝑦 ∈ 𝐶 𝑌 ∈ 𝐷 ) |
23 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 |
24 |
23
|
nfel1 |
⊢ Ⅎ 𝑦 ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ∈ 𝐷 |
25 |
|
csbeq1a |
⊢ ( 𝑦 = ( 2nd ‘ 𝑢 ) → 𝑌 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) |
26 |
25
|
eleq1d |
⊢ ( 𝑦 = ( 2nd ‘ 𝑢 ) → ( 𝑌 ∈ 𝐷 ↔ ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ∈ 𝐷 ) ) |
27 |
24 26
|
rspc |
⊢ ( ( 2nd ‘ 𝑢 ) ∈ 𝐶 → ( ∀ 𝑦 ∈ 𝐶 𝑌 ∈ 𝐷 → ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ∈ 𝐷 ) ) |
28 |
17 22 27
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 × 𝐶 ) ) → ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ∈ 𝐷 ) |
29 |
15 28
|
opelxpd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 × 𝐶 ) ) → 〈 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 , ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 〉 ∈ ( 𝐵 × 𝐷 ) ) |
30 |
29
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑢 ∈ ( 𝐴 × 𝐶 ) 〈 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 , ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 〉 ∈ ( 𝐵 × 𝐷 ) ) |
31 |
7
|
simprd |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∃! 𝑥 ∈ 𝐴 𝑧 = 𝑋 ) |
32 |
31
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ∃! 𝑥 ∈ 𝐴 𝑧 = 𝑋 ) |
33 |
|
reu6 |
⊢ ( ∃! 𝑥 ∈ 𝐴 𝑧 = 𝑋 ↔ ∃ 𝑠 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝑋 ↔ 𝑥 = 𝑠 ) ) |
34 |
32 33
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ∃ 𝑠 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝑋 ↔ 𝑥 = 𝑠 ) ) |
35 |
20
|
simprd |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐷 ∃! 𝑦 ∈ 𝐶 𝑤 = 𝑌 ) |
36 |
35
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐷 ) → ∃! 𝑦 ∈ 𝐶 𝑤 = 𝑌 ) |
37 |
|
reu6 |
⊢ ( ∃! 𝑦 ∈ 𝐶 𝑤 = 𝑌 ↔ ∃ 𝑡 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( 𝑤 = 𝑌 ↔ 𝑦 = 𝑡 ) ) |
38 |
36 37
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐷 ) → ∃ 𝑡 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( 𝑤 = 𝑌 ↔ 𝑦 = 𝑡 ) ) |
39 |
34 38
|
anim12dan |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷 ) ) → ( ∃ 𝑠 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝑋 ↔ 𝑥 = 𝑠 ) ∧ ∃ 𝑡 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( 𝑤 = 𝑌 ↔ 𝑦 = 𝑡 ) ) ) |
40 |
|
reeanv |
⊢ ( ∃ 𝑠 ∈ 𝐴 ∃ 𝑡 ∈ 𝐶 ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝑋 ↔ 𝑥 = 𝑠 ) ∧ ∀ 𝑦 ∈ 𝐶 ( 𝑤 = 𝑌 ↔ 𝑦 = 𝑡 ) ) ↔ ( ∃ 𝑠 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝑋 ↔ 𝑥 = 𝑠 ) ∧ ∃ 𝑡 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( 𝑤 = 𝑌 ↔ 𝑦 = 𝑡 ) ) ) |
41 |
|
pm4.38 |
⊢ ( ( ( 𝑧 = 𝑋 ↔ 𝑥 = 𝑠 ) ∧ ( 𝑤 = 𝑌 ↔ 𝑦 = 𝑡 ) ) → ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) ) |
42 |
41
|
ex |
⊢ ( ( 𝑧 = 𝑋 ↔ 𝑥 = 𝑠 ) → ( ( 𝑤 = 𝑌 ↔ 𝑦 = 𝑡 ) → ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) ) ) |
43 |
42
|
ralimdv |
⊢ ( ( 𝑧 = 𝑋 ↔ 𝑥 = 𝑠 ) → ( ∀ 𝑦 ∈ 𝐶 ( 𝑤 = 𝑌 ↔ 𝑦 = 𝑡 ) → ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) ) ) |
44 |
43
|
com12 |
⊢ ( ∀ 𝑦 ∈ 𝐶 ( 𝑤 = 𝑌 ↔ 𝑦 = 𝑡 ) → ( ( 𝑧 = 𝑋 ↔ 𝑥 = 𝑠 ) → ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) ) ) |
45 |
44
|
ralimdv |
⊢ ( ∀ 𝑦 ∈ 𝐶 ( 𝑤 = 𝑌 ↔ 𝑦 = 𝑡 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝑋 ↔ 𝑥 = 𝑠 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) ) ) |
46 |
45
|
impcom |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝑋 ↔ 𝑥 = 𝑠 ) ∧ ∀ 𝑦 ∈ 𝐶 ( 𝑤 = 𝑌 ↔ 𝑦 = 𝑡 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) ) |
47 |
46
|
reximi |
⊢ ( ∃ 𝑡 ∈ 𝐶 ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝑋 ↔ 𝑥 = 𝑠 ) ∧ ∀ 𝑦 ∈ 𝐶 ( 𝑤 = 𝑌 ↔ 𝑦 = 𝑡 ) ) → ∃ 𝑡 ∈ 𝐶 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) ) |
48 |
47
|
reximi |
⊢ ( ∃ 𝑠 ∈ 𝐴 ∃ 𝑡 ∈ 𝐶 ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝑋 ↔ 𝑥 = 𝑠 ) ∧ ∀ 𝑦 ∈ 𝐶 ( 𝑤 = 𝑌 ↔ 𝑦 = 𝑡 ) ) → ∃ 𝑠 ∈ 𝐴 ∃ 𝑡 ∈ 𝐶 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) ) |
49 |
40 48
|
sylbir |
⊢ ( ( ∃ 𝑠 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝑋 ↔ 𝑥 = 𝑠 ) ∧ ∃ 𝑡 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( 𝑤 = 𝑌 ↔ 𝑦 = 𝑡 ) ) → ∃ 𝑠 ∈ 𝐴 ∃ 𝑡 ∈ 𝐶 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) ) |
50 |
39 49
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷 ) ) → ∃ 𝑠 ∈ 𝐴 ∃ 𝑡 ∈ 𝐶 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) ) |
51 |
|
vex |
⊢ 𝑠 ∈ V |
52 |
|
vex |
⊢ 𝑡 ∈ V |
53 |
51 52
|
op1std |
⊢ ( 𝑢 = 〈 𝑠 , 𝑡 〉 → ( 1st ‘ 𝑢 ) = 𝑠 ) |
54 |
53
|
csbeq1d |
⊢ ( 𝑢 = 〈 𝑠 , 𝑡 〉 → ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 ) |
55 |
54
|
eqeq2d |
⊢ ( 𝑢 = 〈 𝑠 , 𝑡 〉 → ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ↔ 𝑧 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 ) ) |
56 |
51 52
|
op2ndd |
⊢ ( 𝑢 = 〈 𝑠 , 𝑡 〉 → ( 2nd ‘ 𝑢 ) = 𝑡 ) |
57 |
56
|
csbeq1d |
⊢ ( 𝑢 = 〈 𝑠 , 𝑡 〉 → ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) |
58 |
57
|
eqeq2d |
⊢ ( 𝑢 = 〈 𝑠 , 𝑡 〉 → ( 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ↔ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ) |
59 |
55 58
|
anbi12d |
⊢ ( 𝑢 = 〈 𝑠 , 𝑡 〉 → ( ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) ↔ ( 𝑧 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ) ) |
60 |
|
eqeq1 |
⊢ ( 𝑢 = 〈 𝑠 , 𝑡 〉 → ( 𝑢 = 𝑣 ↔ 〈 𝑠 , 𝑡 〉 = 𝑣 ) ) |
61 |
59 60
|
bibi12d |
⊢ ( 𝑢 = 〈 𝑠 , 𝑡 〉 → ( ( ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) ↔ 𝑢 = 𝑣 ) ↔ ( ( 𝑧 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ↔ 〈 𝑠 , 𝑡 〉 = 𝑣 ) ) ) |
62 |
61
|
ralxp |
⊢ ( ∀ 𝑢 ∈ ( 𝐴 × 𝐶 ) ( ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) ↔ 𝑢 = 𝑣 ) ↔ ∀ 𝑠 ∈ 𝐴 ∀ 𝑡 ∈ 𝐶 ( ( 𝑧 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ↔ 〈 𝑠 , 𝑡 〉 = 𝑣 ) ) |
63 |
|
nfv |
⊢ Ⅎ 𝑠 ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ 〈 𝑥 , 𝑦 〉 = 𝑣 ) |
64 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐶 |
65 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑠 / 𝑥 ⦌ 𝑋 |
66 |
65
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑧 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 |
67 |
|
nfv |
⊢ Ⅎ 𝑥 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 |
68 |
66 67
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑧 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) |
69 |
|
nfv |
⊢ Ⅎ 𝑥 〈 𝑠 , 𝑡 〉 = 𝑣 |
70 |
68 69
|
nfbi |
⊢ Ⅎ 𝑥 ( ( 𝑧 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ↔ 〈 𝑠 , 𝑡 〉 = 𝑣 ) |
71 |
64 70
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑡 ∈ 𝐶 ( ( 𝑧 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ↔ 〈 𝑠 , 𝑡 〉 = 𝑣 ) |
72 |
|
nfv |
⊢ Ⅎ 𝑡 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ 〈 𝑥 , 𝑦 〉 = 𝑣 ) |
73 |
|
nfv |
⊢ Ⅎ 𝑦 𝑧 = 𝑋 |
74 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ 𝑡 / 𝑦 ⦌ 𝑌 |
75 |
74
|
nfeq2 |
⊢ Ⅎ 𝑦 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 |
76 |
73 75
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑧 = 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) |
77 |
|
nfv |
⊢ Ⅎ 𝑦 〈 𝑥 , 𝑡 〉 = 𝑣 |
78 |
76 77
|
nfbi |
⊢ Ⅎ 𝑦 ( ( 𝑧 = 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ↔ 〈 𝑥 , 𝑡 〉 = 𝑣 ) |
79 |
|
csbeq1a |
⊢ ( 𝑦 = 𝑡 → 𝑌 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) |
80 |
79
|
eqeq2d |
⊢ ( 𝑦 = 𝑡 → ( 𝑤 = 𝑌 ↔ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ) |
81 |
80
|
anbi2d |
⊢ ( 𝑦 = 𝑡 → ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ ( 𝑧 = 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ) ) |
82 |
|
opeq2 |
⊢ ( 𝑦 = 𝑡 → 〈 𝑥 , 𝑦 〉 = 〈 𝑥 , 𝑡 〉 ) |
83 |
82
|
eqeq1d |
⊢ ( 𝑦 = 𝑡 → ( 〈 𝑥 , 𝑦 〉 = 𝑣 ↔ 〈 𝑥 , 𝑡 〉 = 𝑣 ) ) |
84 |
81 83
|
bibi12d |
⊢ ( 𝑦 = 𝑡 → ( ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ 〈 𝑥 , 𝑦 〉 = 𝑣 ) ↔ ( ( 𝑧 = 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ↔ 〈 𝑥 , 𝑡 〉 = 𝑣 ) ) ) |
85 |
72 78 84
|
cbvralw |
⊢ ( ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ 〈 𝑥 , 𝑦 〉 = 𝑣 ) ↔ ∀ 𝑡 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ↔ 〈 𝑥 , 𝑡 〉 = 𝑣 ) ) |
86 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑠 → 𝑋 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 ) |
87 |
86
|
eqeq2d |
⊢ ( 𝑥 = 𝑠 → ( 𝑧 = 𝑋 ↔ 𝑧 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 ) ) |
88 |
87
|
anbi1d |
⊢ ( 𝑥 = 𝑠 → ( ( 𝑧 = 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ↔ ( 𝑧 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ) ) |
89 |
|
opeq1 |
⊢ ( 𝑥 = 𝑠 → 〈 𝑥 , 𝑡 〉 = 〈 𝑠 , 𝑡 〉 ) |
90 |
89
|
eqeq1d |
⊢ ( 𝑥 = 𝑠 → ( 〈 𝑥 , 𝑡 〉 = 𝑣 ↔ 〈 𝑠 , 𝑡 〉 = 𝑣 ) ) |
91 |
88 90
|
bibi12d |
⊢ ( 𝑥 = 𝑠 → ( ( ( 𝑧 = 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ↔ 〈 𝑥 , 𝑡 〉 = 𝑣 ) ↔ ( ( 𝑧 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ↔ 〈 𝑠 , 𝑡 〉 = 𝑣 ) ) ) |
92 |
91
|
ralbidv |
⊢ ( 𝑥 = 𝑠 → ( ∀ 𝑡 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ↔ 〈 𝑥 , 𝑡 〉 = 𝑣 ) ↔ ∀ 𝑡 ∈ 𝐶 ( ( 𝑧 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ↔ 〈 𝑠 , 𝑡 〉 = 𝑣 ) ) ) |
93 |
85 92
|
syl5bb |
⊢ ( 𝑥 = 𝑠 → ( ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ 〈 𝑥 , 𝑦 〉 = 𝑣 ) ↔ ∀ 𝑡 ∈ 𝐶 ( ( 𝑧 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ↔ 〈 𝑠 , 𝑡 〉 = 𝑣 ) ) ) |
94 |
63 71 93
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ 〈 𝑥 , 𝑦 〉 = 𝑣 ) ↔ ∀ 𝑠 ∈ 𝐴 ∀ 𝑡 ∈ 𝐶 ( ( 𝑧 = ⦋ 𝑠 / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ 𝑡 / 𝑦 ⦌ 𝑌 ) ↔ 〈 𝑠 , 𝑡 〉 = 𝑣 ) ) |
95 |
62 94
|
bitr4i |
⊢ ( ∀ 𝑢 ∈ ( 𝐴 × 𝐶 ) ( ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) ↔ 𝑢 = 𝑣 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ 〈 𝑥 , 𝑦 〉 = 𝑣 ) ) |
96 |
|
eqeq2 |
⊢ ( 𝑣 = 〈 𝑠 , 𝑡 〉 → ( 〈 𝑥 , 𝑦 〉 = 𝑣 ↔ 〈 𝑥 , 𝑦 〉 = 〈 𝑠 , 𝑡 〉 ) ) |
97 |
|
vex |
⊢ 𝑥 ∈ V |
98 |
|
vex |
⊢ 𝑦 ∈ V |
99 |
97 98
|
opth |
⊢ ( 〈 𝑥 , 𝑦 〉 = 〈 𝑠 , 𝑡 〉 ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) |
100 |
96 99
|
bitrdi |
⊢ ( 𝑣 = 〈 𝑠 , 𝑡 〉 → ( 〈 𝑥 , 𝑦 〉 = 𝑣 ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) ) |
101 |
100
|
bibi2d |
⊢ ( 𝑣 = 〈 𝑠 , 𝑡 〉 → ( ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ 〈 𝑥 , 𝑦 〉 = 𝑣 ) ↔ ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) ) ) |
102 |
101
|
2ralbidv |
⊢ ( 𝑣 = 〈 𝑠 , 𝑡 〉 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ 〈 𝑥 , 𝑦 〉 = 𝑣 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) ) ) |
103 |
95 102
|
syl5bb |
⊢ ( 𝑣 = 〈 𝑠 , 𝑡 〉 → ( ∀ 𝑢 ∈ ( 𝐴 × 𝐶 ) ( ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) ↔ 𝑢 = 𝑣 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) ) ) |
104 |
103
|
rexxp |
⊢ ( ∃ 𝑣 ∈ ( 𝐴 × 𝐶 ) ∀ 𝑢 ∈ ( 𝐴 × 𝐶 ) ( ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) ↔ 𝑢 = 𝑣 ) ↔ ∃ 𝑠 ∈ 𝐴 ∃ 𝑡 ∈ 𝐶 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ↔ ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) ) ) |
105 |
50 104
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷 ) ) → ∃ 𝑣 ∈ ( 𝐴 × 𝐶 ) ∀ 𝑢 ∈ ( 𝐴 × 𝐶 ) ( ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) ↔ 𝑢 = 𝑣 ) ) |
106 |
|
reu6 |
⊢ ( ∃! 𝑢 ∈ ( 𝐴 × 𝐶 ) ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) ↔ ∃ 𝑣 ∈ ( 𝐴 × 𝐶 ) ∀ 𝑢 ∈ ( 𝐴 × 𝐶 ) ( ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) ↔ 𝑢 = 𝑣 ) ) |
107 |
105 106
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷 ) ) → ∃! 𝑢 ∈ ( 𝐴 × 𝐶 ) ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) ) |
108 |
107
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐷 ∃! 𝑢 ∈ ( 𝐴 × 𝐶 ) ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) ) |
109 |
|
eqeq1 |
⊢ ( 𝑣 = 〈 𝑧 , 𝑤 〉 → ( 𝑣 = 〈 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 , ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 〉 ↔ 〈 𝑧 , 𝑤 〉 = 〈 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 , ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 〉 ) ) |
110 |
|
vex |
⊢ 𝑧 ∈ V |
111 |
|
vex |
⊢ 𝑤 ∈ V |
112 |
110 111
|
opth |
⊢ ( 〈 𝑧 , 𝑤 〉 = 〈 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 , ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 〉 ↔ ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) ) |
113 |
109 112
|
bitrdi |
⊢ ( 𝑣 = 〈 𝑧 , 𝑤 〉 → ( 𝑣 = 〈 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 , ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 〉 ↔ ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) ) ) |
114 |
113
|
reubidv |
⊢ ( 𝑣 = 〈 𝑧 , 𝑤 〉 → ( ∃! 𝑢 ∈ ( 𝐴 × 𝐶 ) 𝑣 = 〈 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 , ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 〉 ↔ ∃! 𝑢 ∈ ( 𝐴 × 𝐶 ) ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) ) ) |
115 |
114
|
ralxp |
⊢ ( ∀ 𝑣 ∈ ( 𝐵 × 𝐷 ) ∃! 𝑢 ∈ ( 𝐴 × 𝐶 ) 𝑣 = 〈 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 , ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 〉 ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐷 ∃! 𝑢 ∈ ( 𝐴 × 𝐶 ) ( 𝑧 = ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 ∧ 𝑤 = ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 ) ) |
116 |
108 115
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑣 ∈ ( 𝐵 × 𝐷 ) ∃! 𝑢 ∈ ( 𝐴 × 𝐶 ) 𝑣 = 〈 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 , ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 〉 ) |
117 |
|
nfcv |
⊢ Ⅎ 𝑧 〈 𝑋 , 𝑌 〉 |
118 |
|
nfcv |
⊢ Ⅎ 𝑤 〈 𝑋 , 𝑌 〉 |
119 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝑋 |
120 |
|
nfcv |
⊢ Ⅎ 𝑥 ⦋ 𝑤 / 𝑦 ⦌ 𝑌 |
121 |
119 120
|
nfop |
⊢ Ⅎ 𝑥 〈 ⦋ 𝑧 / 𝑥 ⦌ 𝑋 , ⦋ 𝑤 / 𝑦 ⦌ 𝑌 〉 |
122 |
|
nfcv |
⊢ Ⅎ 𝑦 ⦋ 𝑧 / 𝑥 ⦌ 𝑋 |
123 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ 𝑤 / 𝑦 ⦌ 𝑌 |
124 |
122 123
|
nfop |
⊢ Ⅎ 𝑦 〈 ⦋ 𝑧 / 𝑥 ⦌ 𝑋 , ⦋ 𝑤 / 𝑦 ⦌ 𝑌 〉 |
125 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑧 → 𝑋 = ⦋ 𝑧 / 𝑥 ⦌ 𝑋 ) |
126 |
|
csbeq1a |
⊢ ( 𝑦 = 𝑤 → 𝑌 = ⦋ 𝑤 / 𝑦 ⦌ 𝑌 ) |
127 |
|
opeq12 |
⊢ ( ( 𝑋 = ⦋ 𝑧 / 𝑥 ⦌ 𝑋 ∧ 𝑌 = ⦋ 𝑤 / 𝑦 ⦌ 𝑌 ) → 〈 𝑋 , 𝑌 〉 = 〈 ⦋ 𝑧 / 𝑥 ⦌ 𝑋 , ⦋ 𝑤 / 𝑦 ⦌ 𝑌 〉 ) |
128 |
125 126 127
|
syl2an |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 〈 𝑋 , 𝑌 〉 = 〈 ⦋ 𝑧 / 𝑥 ⦌ 𝑋 , ⦋ 𝑤 / 𝑦 ⦌ 𝑌 〉 ) |
129 |
117 118 121 124 128
|
cbvmpo |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ 〈 𝑋 , 𝑌 〉 ) = ( 𝑧 ∈ 𝐴 , 𝑤 ∈ 𝐶 ↦ 〈 ⦋ 𝑧 / 𝑥 ⦌ 𝑋 , ⦋ 𝑤 / 𝑦 ⦌ 𝑌 〉 ) |
130 |
110 111
|
op1std |
⊢ ( 𝑢 = 〈 𝑧 , 𝑤 〉 → ( 1st ‘ 𝑢 ) = 𝑧 ) |
131 |
130
|
csbeq1d |
⊢ ( 𝑢 = 〈 𝑧 , 𝑤 〉 → ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 = ⦋ 𝑧 / 𝑥 ⦌ 𝑋 ) |
132 |
110 111
|
op2ndd |
⊢ ( 𝑢 = 〈 𝑧 , 𝑤 〉 → ( 2nd ‘ 𝑢 ) = 𝑤 ) |
133 |
132
|
csbeq1d |
⊢ ( 𝑢 = 〈 𝑧 , 𝑤 〉 → ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 = ⦋ 𝑤 / 𝑦 ⦌ 𝑌 ) |
134 |
131 133
|
opeq12d |
⊢ ( 𝑢 = 〈 𝑧 , 𝑤 〉 → 〈 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 , ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 〉 = 〈 ⦋ 𝑧 / 𝑥 ⦌ 𝑋 , ⦋ 𝑤 / 𝑦 ⦌ 𝑌 〉 ) |
135 |
134
|
mpompt |
⊢ ( 𝑢 ∈ ( 𝐴 × 𝐶 ) ↦ 〈 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 , ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 〉 ) = ( 𝑧 ∈ 𝐴 , 𝑤 ∈ 𝐶 ↦ 〈 ⦋ 𝑧 / 𝑥 ⦌ 𝑋 , ⦋ 𝑤 / 𝑦 ⦌ 𝑌 〉 ) |
136 |
129 135
|
eqtr4i |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ 〈 𝑋 , 𝑌 〉 ) = ( 𝑢 ∈ ( 𝐴 × 𝐶 ) ↦ 〈 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 , ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 〉 ) |
137 |
136
|
f1ompt |
⊢ ( ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ 〈 𝑋 , 𝑌 〉 ) : ( 𝐴 × 𝐶 ) –1-1-onto→ ( 𝐵 × 𝐷 ) ↔ ( ∀ 𝑢 ∈ ( 𝐴 × 𝐶 ) 〈 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 , ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 〉 ∈ ( 𝐵 × 𝐷 ) ∧ ∀ 𝑣 ∈ ( 𝐵 × 𝐷 ) ∃! 𝑢 ∈ ( 𝐴 × 𝐶 ) 𝑣 = 〈 ⦋ ( 1st ‘ 𝑢 ) / 𝑥 ⦌ 𝑋 , ⦋ ( 2nd ‘ 𝑢 ) / 𝑦 ⦌ 𝑌 〉 ) ) |
138 |
30 116 137
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ 〈 𝑋 , 𝑌 〉 ) : ( 𝐴 × 𝐶 ) –1-1-onto→ ( 𝐵 × 𝐷 ) ) |