Metamath Proof Explorer


Theorem xpider

Description: A Cartesian square is an equivalence relation (in general, it is not a poset). (Contributed by FL, 31-Jul-2009) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion xpider ( 𝐴 × 𝐴 ) Er 𝐴

Proof

Step Hyp Ref Expression
1 relxp Rel ( 𝐴 × 𝐴 )
2 dmxpid dom ( 𝐴 × 𝐴 ) = 𝐴
3 cnvxp ( 𝐴 × 𝐴 ) = ( 𝐴 × 𝐴 )
4 xpidtr ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 )
5 uneq1 ( ( 𝐴 × 𝐴 ) = ( 𝐴 × 𝐴 ) → ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) )
6 unss2 ( ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) → ( ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) )
7 unidm ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 )
8 eqtr ( ( ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) ∧ ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 ) ) → ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 ) )
9 sseq2 ( ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 ) → ( ( ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) ↔ ( ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝐴 × 𝐴 ) ) )
10 9 biimpd ( ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 ) → ( ( ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) → ( ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝐴 × 𝐴 ) ) )
11 8 10 syl ( ( ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) ∧ ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 ) ) → ( ( ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) → ( ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝐴 × 𝐴 ) ) )
12 7 11 mpan2 ( ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) → ( ( ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) → ( ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝐴 × 𝐴 ) ) )
13 5 6 12 syl2im ( ( 𝐴 × 𝐴 ) = ( 𝐴 × 𝐴 ) → ( ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) → ( ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝐴 × 𝐴 ) ) )
14 3 4 13 mp2 ( ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝐴 × 𝐴 )
15 df-er ( ( 𝐴 × 𝐴 ) Er 𝐴 ↔ ( Rel ( 𝐴 × 𝐴 ) ∧ dom ( 𝐴 × 𝐴 ) = 𝐴 ∧ ( ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝐴 × 𝐴 ) ) )
16 1 2 14 15 mpbir3an ( 𝐴 × 𝐴 ) Er 𝐴