Step |
Hyp |
Ref |
Expression |
1 |
|
relxp |
⊢ Rel ( 𝐴 × 𝐴 ) |
2 |
|
dmxpid |
⊢ dom ( 𝐴 × 𝐴 ) = 𝐴 |
3 |
|
cnvxp |
⊢ ◡ ( 𝐴 × 𝐴 ) = ( 𝐴 × 𝐴 ) |
4 |
|
xpidtr |
⊢ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) |
5 |
|
uneq1 |
⊢ ( ◡ ( 𝐴 × 𝐴 ) = ( 𝐴 × 𝐴 ) → ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) ) |
6 |
|
unss2 |
⊢ ( ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) → ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) ) |
7 |
|
unidm |
⊢ ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 ) |
8 |
|
eqtr |
⊢ ( ( ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) ∧ ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 ) ) → ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 ) ) |
9 |
|
sseq2 |
⊢ ( ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 ) → ( ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) ↔ ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝐴 × 𝐴 ) ) ) |
10 |
9
|
biimpd |
⊢ ( ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 ) → ( ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) → ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝐴 × 𝐴 ) ) ) |
11 |
8 10
|
syl |
⊢ ( ( ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) ∧ ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 ) ) → ( ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) → ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝐴 × 𝐴 ) ) ) |
12 |
7 11
|
mpan2 |
⊢ ( ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) → ( ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) → ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝐴 × 𝐴 ) ) ) |
13 |
5 6 12
|
syl2im |
⊢ ( ◡ ( 𝐴 × 𝐴 ) = ( 𝐴 × 𝐴 ) → ( ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) → ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝐴 × 𝐴 ) ) ) |
14 |
3 4 13
|
mp2 |
⊢ ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝐴 × 𝐴 ) |
15 |
|
df-er |
⊢ ( ( 𝐴 × 𝐴 ) Er 𝐴 ↔ ( Rel ( 𝐴 × 𝐴 ) ∧ dom ( 𝐴 × 𝐴 ) = 𝐴 ∧ ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝐴 × 𝐴 ) ) ) |
16 |
1 2 14 15
|
mpbir3an |
⊢ ( 𝐴 × 𝐴 ) Er 𝐴 |