Step |
Hyp |
Ref |
Expression |
1 |
|
brxp |
⊢ ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) |
2 |
|
brxp |
⊢ ( 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) |
3 |
|
brxp |
⊢ ( 𝑥 ( 𝐴 × 𝐴 ) 𝑧 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) |
4 |
3
|
simplbi2com |
⊢ ( 𝑧 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → 𝑥 ( 𝐴 × 𝐴 ) 𝑧 ) ) |
5 |
2 4
|
simplbiim |
⊢ ( 𝑦 ( 𝐴 × 𝐴 ) 𝑧 → ( 𝑥 ∈ 𝐴 → 𝑥 ( 𝐴 × 𝐴 ) 𝑧 ) ) |
6 |
5
|
com12 |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑦 ( 𝐴 × 𝐴 ) 𝑧 → 𝑥 ( 𝐴 × 𝐴 ) 𝑧 ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ( 𝐴 × 𝐴 ) 𝑧 → 𝑥 ( 𝐴 × 𝐴 ) 𝑧 ) ) |
8 |
1 7
|
sylbi |
⊢ ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 → ( 𝑦 ( 𝐴 × 𝐴 ) 𝑧 → 𝑥 ( 𝐴 × 𝐴 ) 𝑧 ) ) |
9 |
8
|
imp |
⊢ ( ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ∧ 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) → 𝑥 ( 𝐴 × 𝐴 ) 𝑧 ) |
10 |
9
|
ax-gen |
⊢ ∀ 𝑧 ( ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ∧ 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) → 𝑥 ( 𝐴 × 𝐴 ) 𝑧 ) |
11 |
10
|
gen2 |
⊢ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ∧ 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) → 𝑥 ( 𝐴 × 𝐴 ) 𝑧 ) |
12 |
|
cotr |
⊢ ( ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ∧ 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) → 𝑥 ( 𝐴 × 𝐴 ) 𝑧 ) ) |
13 |
11 12
|
mpbir |
⊢ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) |