Metamath Proof Explorer


Theorem xpidtr

Description: A Cartesian square is a transitive relation. (Contributed by FL, 31-Jul-2009)

Ref Expression
Assertion xpidtr ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 )

Proof

Step Hyp Ref Expression
1 brxp ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ↔ ( 𝑥𝐴𝑦𝐴 ) )
2 brxp ( 𝑦 ( 𝐴 × 𝐴 ) 𝑧 ↔ ( 𝑦𝐴𝑧𝐴 ) )
3 brxp ( 𝑥 ( 𝐴 × 𝐴 ) 𝑧 ↔ ( 𝑥𝐴𝑧𝐴 ) )
4 3 simplbi2com ( 𝑧𝐴 → ( 𝑥𝐴𝑥 ( 𝐴 × 𝐴 ) 𝑧 ) )
5 2 4 simplbiim ( 𝑦 ( 𝐴 × 𝐴 ) 𝑧 → ( 𝑥𝐴𝑥 ( 𝐴 × 𝐴 ) 𝑧 ) )
6 5 com12 ( 𝑥𝐴 → ( 𝑦 ( 𝐴 × 𝐴 ) 𝑧𝑥 ( 𝐴 × 𝐴 ) 𝑧 ) )
7 6 adantr ( ( 𝑥𝐴𝑦𝐴 ) → ( 𝑦 ( 𝐴 × 𝐴 ) 𝑧𝑥 ( 𝐴 × 𝐴 ) 𝑧 ) )
8 1 7 sylbi ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 → ( 𝑦 ( 𝐴 × 𝐴 ) 𝑧𝑥 ( 𝐴 × 𝐴 ) 𝑧 ) )
9 8 imp ( ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) → 𝑥 ( 𝐴 × 𝐴 ) 𝑧 )
10 9 ax-gen 𝑧 ( ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) → 𝑥 ( 𝐴 × 𝐴 ) 𝑧 )
11 10 gen2 𝑥𝑦𝑧 ( ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) → 𝑥 ( 𝐴 × 𝐴 ) 𝑧 )
12 cotr ( ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) ↔ ∀ 𝑥𝑦𝑧 ( ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦𝑦 ( 𝐴 × 𝐴 ) 𝑧 ) → 𝑥 ( 𝐴 × 𝐴 ) 𝑧 ) )
13 11 12 mpbir ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 )