| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brxp | ⊢ ( 𝑥 ( 𝐴  ×  𝐴 ) 𝑦  ↔  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) ) | 
						
							| 2 |  | brxp | ⊢ ( 𝑦 ( 𝐴  ×  𝐴 ) 𝑧  ↔  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) ) | 
						
							| 3 |  | brxp | ⊢ ( 𝑥 ( 𝐴  ×  𝐴 ) 𝑧  ↔  ( 𝑥  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) ) | 
						
							| 4 | 3 | simplbi2com | ⊢ ( 𝑧  ∈  𝐴  →  ( 𝑥  ∈  𝐴  →  𝑥 ( 𝐴  ×  𝐴 ) 𝑧 ) ) | 
						
							| 5 | 2 4 | simplbiim | ⊢ ( 𝑦 ( 𝐴  ×  𝐴 ) 𝑧  →  ( 𝑥  ∈  𝐴  →  𝑥 ( 𝐴  ×  𝐴 ) 𝑧 ) ) | 
						
							| 6 | 5 | com12 | ⊢ ( 𝑥  ∈  𝐴  →  ( 𝑦 ( 𝐴  ×  𝐴 ) 𝑧  →  𝑥 ( 𝐴  ×  𝐴 ) 𝑧 ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  →  ( 𝑦 ( 𝐴  ×  𝐴 ) 𝑧  →  𝑥 ( 𝐴  ×  𝐴 ) 𝑧 ) ) | 
						
							| 8 | 1 7 | sylbi | ⊢ ( 𝑥 ( 𝐴  ×  𝐴 ) 𝑦  →  ( 𝑦 ( 𝐴  ×  𝐴 ) 𝑧  →  𝑥 ( 𝐴  ×  𝐴 ) 𝑧 ) ) | 
						
							| 9 | 8 | imp | ⊢ ( ( 𝑥 ( 𝐴  ×  𝐴 ) 𝑦  ∧  𝑦 ( 𝐴  ×  𝐴 ) 𝑧 )  →  𝑥 ( 𝐴  ×  𝐴 ) 𝑧 ) | 
						
							| 10 | 9 | ax-gen | ⊢ ∀ 𝑧 ( ( 𝑥 ( 𝐴  ×  𝐴 ) 𝑦  ∧  𝑦 ( 𝐴  ×  𝐴 ) 𝑧 )  →  𝑥 ( 𝐴  ×  𝐴 ) 𝑧 ) | 
						
							| 11 | 10 | gen2 | ⊢ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝐴  ×  𝐴 ) 𝑦  ∧  𝑦 ( 𝐴  ×  𝐴 ) 𝑧 )  →  𝑥 ( 𝐴  ×  𝐴 ) 𝑧 ) | 
						
							| 12 |  | cotr | ⊢ ( ( ( 𝐴  ×  𝐴 )  ∘  ( 𝐴  ×  𝐴 ) )  ⊆  ( 𝐴  ×  𝐴 )  ↔  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝐴  ×  𝐴 ) 𝑦  ∧  𝑦 ( 𝐴  ×  𝐴 ) 𝑧 )  →  𝑥 ( 𝐴  ×  𝐴 ) 𝑧 ) ) | 
						
							| 13 | 11 12 | mpbir | ⊢ ( ( 𝐴  ×  𝐴 )  ∘  ( 𝐴  ×  𝐴 ) )  ⊆  ( 𝐴  ×  𝐴 ) |