| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relxp |
⊢ Rel ( 𝐶 × 𝐵 ) |
| 2 |
1
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐴 Rel ( 𝐶 × 𝐵 ) |
| 3 |
|
r19.2z |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 Rel ( 𝐶 × 𝐵 ) ) → ∃ 𝑥 ∈ 𝐴 Rel ( 𝐶 × 𝐵 ) ) |
| 4 |
2 3
|
mpan2 |
⊢ ( 𝐴 ≠ ∅ → ∃ 𝑥 ∈ 𝐴 Rel ( 𝐶 × 𝐵 ) ) |
| 5 |
|
reliin |
⊢ ( ∃ 𝑥 ∈ 𝐴 Rel ( 𝐶 × 𝐵 ) → Rel ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) |
| 6 |
4 5
|
syl |
⊢ ( 𝐴 ≠ ∅ → Rel ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) |
| 7 |
|
relxp |
⊢ Rel ( 𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵 ) |
| 8 |
6 7
|
jctil |
⊢ ( 𝐴 ≠ ∅ → ( Rel ( 𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵 ) ∧ Rel ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) ) |
| 9 |
|
r19.28zv |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ) ) ) |
| 10 |
9
|
bicomd |
⊢ ( 𝐴 ≠ ∅ → ( ( 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐵 ) ) ) |
| 11 |
|
eliin |
⊢ ( 𝑧 ∈ V → ( 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ) ) |
| 12 |
11
|
elv |
⊢ ( 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ) |
| 13 |
12
|
anbi2i |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ) ↔ ( 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ) ) |
| 14 |
|
opelxp |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( 𝐶 × 𝐵 ) ↔ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐵 ) ) |
| 15 |
14
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 〈 𝑦 , 𝑧 〉 ∈ ( 𝐶 × 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐵 ) ) |
| 16 |
10 13 15
|
3bitr4g |
⊢ ( 𝐴 ≠ ∅ → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 〈 𝑦 , 𝑧 〉 ∈ ( 𝐶 × 𝐵 ) ) ) |
| 17 |
|
opelxp |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( 𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵 ) ↔ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ) ) |
| 18 |
|
opex |
⊢ 〈 𝑦 , 𝑧 〉 ∈ V |
| 19 |
|
eliin |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ V → ( 〈 𝑦 , 𝑧 〉 ∈ ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 〈 𝑦 , 𝑧 〉 ∈ ( 𝐶 × 𝐵 ) ) ) |
| 20 |
18 19
|
ax-mp |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 〈 𝑦 , 𝑧 〉 ∈ ( 𝐶 × 𝐵 ) ) |
| 21 |
16 17 20
|
3bitr4g |
⊢ ( 𝐴 ≠ ∅ → ( 〈 𝑦 , 𝑧 〉 ∈ ( 𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵 ) ↔ 〈 𝑦 , 𝑧 〉 ∈ ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) ) |
| 22 |
21
|
eqrelrdv2 |
⊢ ( ( ( Rel ( 𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵 ) ∧ Rel ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) ∧ 𝐴 ≠ ∅ ) → ( 𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵 ) = ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) |
| 23 |
8 22
|
mpancom |
⊢ ( 𝐴 ≠ ∅ → ( 𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵 ) = ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) |