Metamath Proof Explorer


Theorem xpimasn

Description: Direct image of a singleton by a Cartesian product. (Contributed by Thierry Arnoux, 14-Jan-2018) (Proof shortened by BJ, 6-Apr-2019)

Ref Expression
Assertion xpimasn ( 𝑋𝐴 → ( ( 𝐴 × 𝐵 ) “ { 𝑋 } ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 disjsn ( ( 𝐴 ∩ { 𝑋 } ) = ∅ ↔ ¬ 𝑋𝐴 )
2 1 necon3abii ( ( 𝐴 ∩ { 𝑋 } ) ≠ ∅ ↔ ¬ ¬ 𝑋𝐴 )
3 notnotb ( 𝑋𝐴 ↔ ¬ ¬ 𝑋𝐴 )
4 2 3 bitr4i ( ( 𝐴 ∩ { 𝑋 } ) ≠ ∅ ↔ 𝑋𝐴 )
5 xpima2 ( ( 𝐴 ∩ { 𝑋 } ) ≠ ∅ → ( ( 𝐴 × 𝐵 ) “ { 𝑋 } ) = 𝐵 )
6 4 5 sylbir ( 𝑋𝐴 → ( ( 𝐴 × 𝐵 ) “ { 𝑋 } ) = 𝐵 )