Description: Direct image of a singleton by a Cartesian product. (Contributed by Thierry Arnoux, 14-Jan-2018) (Proof shortened by BJ, 6-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | xpimasn | ⊢ ( 𝑋 ∈ 𝐴 → ( ( 𝐴 × 𝐵 ) “ { 𝑋 } ) = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjsn | ⊢ ( ( 𝐴 ∩ { 𝑋 } ) = ∅ ↔ ¬ 𝑋 ∈ 𝐴 ) | |
2 | 1 | necon3abii | ⊢ ( ( 𝐴 ∩ { 𝑋 } ) ≠ ∅ ↔ ¬ ¬ 𝑋 ∈ 𝐴 ) |
3 | notnotb | ⊢ ( 𝑋 ∈ 𝐴 ↔ ¬ ¬ 𝑋 ∈ 𝐴 ) | |
4 | 2 3 | bitr4i | ⊢ ( ( 𝐴 ∩ { 𝑋 } ) ≠ ∅ ↔ 𝑋 ∈ 𝐴 ) |
5 | xpima2 | ⊢ ( ( 𝐴 ∩ { 𝑋 } ) ≠ ∅ → ( ( 𝐴 × 𝐵 ) “ { 𝑋 } ) = 𝐵 ) | |
6 | 4 5 | sylbir | ⊢ ( 𝑋 ∈ 𝐴 → ( ( 𝐴 × 𝐵 ) “ { 𝑋 } ) = 𝐵 ) |