Metamath Proof Explorer


Theorem xpindi

Description: Distributive law for Cartesian product over intersection. Theorem 102 of Suppes p. 52. (Contributed by NM, 26-Sep-2004)

Ref Expression
Assertion xpindi ( 𝐴 × ( 𝐵𝐶 ) ) = ( ( 𝐴 × 𝐵 ) ∩ ( 𝐴 × 𝐶 ) )

Proof

Step Hyp Ref Expression
1 inxp ( ( 𝐴 × 𝐵 ) ∩ ( 𝐴 × 𝐶 ) ) = ( ( 𝐴𝐴 ) × ( 𝐵𝐶 ) )
2 inidm ( 𝐴𝐴 ) = 𝐴
3 2 xpeq1i ( ( 𝐴𝐴 ) × ( 𝐵𝐶 ) ) = ( 𝐴 × ( 𝐵𝐶 ) )
4 1 3 eqtr2i ( 𝐴 × ( 𝐵𝐶 ) ) = ( ( 𝐴 × 𝐵 ) ∩ ( 𝐴 × 𝐶 ) )