Step |
Hyp |
Ref |
Expression |
1 |
|
xpmapen.1 |
⊢ 𝐴 ∈ V |
2 |
|
xpmapen.2 |
⊢ 𝐵 ∈ V |
3 |
|
xpmapen.3 |
⊢ 𝐶 ∈ V |
4 |
|
xpmapenlem.4 |
⊢ 𝐷 = ( 𝑧 ∈ 𝐶 ↦ ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) ) |
5 |
|
xpmapenlem.5 |
⊢ 𝑅 = ( 𝑧 ∈ 𝐶 ↦ ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) ) |
6 |
|
xpmapenlem.6 |
⊢ 𝑆 = ( 𝑧 ∈ 𝐶 ↦ 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ) |
7 |
|
ovex |
⊢ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∈ V |
8 |
|
ovex |
⊢ ( 𝐴 ↑m 𝐶 ) ∈ V |
9 |
|
ovex |
⊢ ( 𝐵 ↑m 𝐶 ) ∈ V |
10 |
8 9
|
xpex |
⊢ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ∈ V |
11 |
1 2
|
xpex |
⊢ ( 𝐴 × 𝐵 ) ∈ V |
12 |
11 3
|
elmap |
⊢ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ↔ 𝑥 : 𝐶 ⟶ ( 𝐴 × 𝐵 ) ) |
13 |
|
ffvelrn |
⊢ ( ( 𝑥 : 𝐶 ⟶ ( 𝐴 × 𝐵 ) ∧ 𝑧 ∈ 𝐶 ) → ( 𝑥 ‘ 𝑧 ) ∈ ( 𝐴 × 𝐵 ) ) |
14 |
12 13
|
sylanb |
⊢ ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑧 ∈ 𝐶 ) → ( 𝑥 ‘ 𝑧 ) ∈ ( 𝐴 × 𝐵 ) ) |
15 |
|
xp1st |
⊢ ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝐴 × 𝐵 ) → ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) ∈ 𝐴 ) |
16 |
14 15
|
syl |
⊢ ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑧 ∈ 𝐶 ) → ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) ∈ 𝐴 ) |
17 |
16 4
|
fmptd |
⊢ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) → 𝐷 : 𝐶 ⟶ 𝐴 ) |
18 |
1 3
|
elmap |
⊢ ( 𝐷 ∈ ( 𝐴 ↑m 𝐶 ) ↔ 𝐷 : 𝐶 ⟶ 𝐴 ) |
19 |
17 18
|
sylibr |
⊢ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) → 𝐷 ∈ ( 𝐴 ↑m 𝐶 ) ) |
20 |
|
xp2nd |
⊢ ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝐴 × 𝐵 ) → ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) ∈ 𝐵 ) |
21 |
14 20
|
syl |
⊢ ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑧 ∈ 𝐶 ) → ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) ∈ 𝐵 ) |
22 |
21 5
|
fmptd |
⊢ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) → 𝑅 : 𝐶 ⟶ 𝐵 ) |
23 |
2 3
|
elmap |
⊢ ( 𝑅 ∈ ( 𝐵 ↑m 𝐶 ) ↔ 𝑅 : 𝐶 ⟶ 𝐵 ) |
24 |
22 23
|
sylibr |
⊢ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) → 𝑅 ∈ ( 𝐵 ↑m 𝐶 ) ) |
25 |
19 24
|
opelxpd |
⊢ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) → 〈 𝐷 , 𝑅 〉 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) |
26 |
|
xp1st |
⊢ ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) → ( 1st ‘ 𝑦 ) ∈ ( 𝐴 ↑m 𝐶 ) ) |
27 |
1 3
|
elmap |
⊢ ( ( 1st ‘ 𝑦 ) ∈ ( 𝐴 ↑m 𝐶 ) ↔ ( 1st ‘ 𝑦 ) : 𝐶 ⟶ 𝐴 ) |
28 |
26 27
|
sylib |
⊢ ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) → ( 1st ‘ 𝑦 ) : 𝐶 ⟶ 𝐴 ) |
29 |
28
|
ffvelrnda |
⊢ ( ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ∧ 𝑧 ∈ 𝐶 ) → ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) ∈ 𝐴 ) |
30 |
|
xp2nd |
⊢ ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) → ( 2nd ‘ 𝑦 ) ∈ ( 𝐵 ↑m 𝐶 ) ) |
31 |
2 3
|
elmap |
⊢ ( ( 2nd ‘ 𝑦 ) ∈ ( 𝐵 ↑m 𝐶 ) ↔ ( 2nd ‘ 𝑦 ) : 𝐶 ⟶ 𝐵 ) |
32 |
30 31
|
sylib |
⊢ ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) → ( 2nd ‘ 𝑦 ) : 𝐶 ⟶ 𝐵 ) |
33 |
32
|
ffvelrnda |
⊢ ( ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ∧ 𝑧 ∈ 𝐶 ) → ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) ∈ 𝐵 ) |
34 |
29 33
|
opelxpd |
⊢ ( ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ∧ 𝑧 ∈ 𝐶 ) → 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ∈ ( 𝐴 × 𝐵 ) ) |
35 |
34 6
|
fmptd |
⊢ ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) → 𝑆 : 𝐶 ⟶ ( 𝐴 × 𝐵 ) ) |
36 |
11 3
|
elmap |
⊢ ( 𝑆 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ↔ 𝑆 : 𝐶 ⟶ ( 𝐴 × 𝐵 ) ) |
37 |
35 36
|
sylibr |
⊢ ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) → 𝑆 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ) |
38 |
|
1st2nd2 |
⊢ ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
39 |
38
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
40 |
28
|
feqmptd |
⊢ ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) → ( 1st ‘ 𝑦 ) = ( 𝑧 ∈ 𝐶 ↦ ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) ) ) |
41 |
40
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → ( 1st ‘ 𝑦 ) = ( 𝑧 ∈ 𝐶 ↦ ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) ) ) |
42 |
|
simplr |
⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧 ∈ 𝐶 ) → 𝑥 = 𝑆 ) |
43 |
42
|
fveq1d |
⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧 ∈ 𝐶 ) → ( 𝑥 ‘ 𝑧 ) = ( 𝑆 ‘ 𝑧 ) ) |
44 |
|
opex |
⊢ 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ∈ V |
45 |
6
|
fvmpt2 |
⊢ ( ( 𝑧 ∈ 𝐶 ∧ 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ∈ V ) → ( 𝑆 ‘ 𝑧 ) = 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ) |
46 |
44 45
|
mpan2 |
⊢ ( 𝑧 ∈ 𝐶 → ( 𝑆 ‘ 𝑧 ) = 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ) |
47 |
46
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧 ∈ 𝐶 ) → ( 𝑆 ‘ 𝑧 ) = 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ) |
48 |
43 47
|
eqtrd |
⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧 ∈ 𝐶 ) → ( 𝑥 ‘ 𝑧 ) = 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ) |
49 |
48
|
fveq2d |
⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧 ∈ 𝐶 ) → ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) = ( 1st ‘ 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ) ) |
50 |
|
fvex |
⊢ ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) ∈ V |
51 |
|
fvex |
⊢ ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) ∈ V |
52 |
50 51
|
op1st |
⊢ ( 1st ‘ 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ) = ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) |
53 |
49 52
|
eqtrdi |
⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧 ∈ 𝐶 ) → ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) = ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) ) |
54 |
53
|
mpteq2dva |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → ( 𝑧 ∈ 𝐶 ↦ ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝐶 ↦ ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) ) ) |
55 |
4 54
|
eqtrid |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → 𝐷 = ( 𝑧 ∈ 𝐶 ↦ ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) ) ) |
56 |
41 55
|
eqtr4d |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → ( 1st ‘ 𝑦 ) = 𝐷 ) |
57 |
32
|
feqmptd |
⊢ ( 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) → ( 2nd ‘ 𝑦 ) = ( 𝑧 ∈ 𝐶 ↦ ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) ) ) |
58 |
57
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → ( 2nd ‘ 𝑦 ) = ( 𝑧 ∈ 𝐶 ↦ ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) ) ) |
59 |
48
|
fveq2d |
⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧 ∈ 𝐶 ) → ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) = ( 2nd ‘ 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ) ) |
60 |
50 51
|
op2nd |
⊢ ( 2nd ‘ 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ) = ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) |
61 |
59 60
|
eqtrdi |
⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) ∧ 𝑧 ∈ 𝐶 ) → ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) = ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) ) |
62 |
61
|
mpteq2dva |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → ( 𝑧 ∈ 𝐶 ↦ ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝐶 ↦ ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) ) ) |
63 |
5 62
|
eqtrid |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → 𝑅 = ( 𝑧 ∈ 𝐶 ↦ ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) ) ) |
64 |
58 63
|
eqtr4d |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → ( 2nd ‘ 𝑦 ) = 𝑅 ) |
65 |
56 64
|
opeq12d |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 = 〈 𝐷 , 𝑅 〉 ) |
66 |
39 65
|
eqtrd |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑥 = 𝑆 ) → 𝑦 = 〈 𝐷 , 𝑅 〉 ) |
67 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ) |
68 |
67 12
|
sylib |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → 𝑥 : 𝐶 ⟶ ( 𝐴 × 𝐵 ) ) |
69 |
68
|
feqmptd |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → 𝑥 = ( 𝑧 ∈ 𝐶 ↦ ( 𝑥 ‘ 𝑧 ) ) ) |
70 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → 𝑦 = 〈 𝐷 , 𝑅 〉 ) |
71 |
70
|
fveq2d |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → ( 1st ‘ 𝑦 ) = ( 1st ‘ 〈 𝐷 , 𝑅 〉 ) ) |
72 |
19
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → 𝐷 ∈ ( 𝐴 ↑m 𝐶 ) ) |
73 |
24
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → 𝑅 ∈ ( 𝐵 ↑m 𝐶 ) ) |
74 |
|
op1stg |
⊢ ( ( 𝐷 ∈ ( 𝐴 ↑m 𝐶 ) ∧ 𝑅 ∈ ( 𝐵 ↑m 𝐶 ) ) → ( 1st ‘ 〈 𝐷 , 𝑅 〉 ) = 𝐷 ) |
75 |
72 73 74
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → ( 1st ‘ 〈 𝐷 , 𝑅 〉 ) = 𝐷 ) |
76 |
71 75
|
eqtrd |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → ( 1st ‘ 𝑦 ) = 𝐷 ) |
77 |
76
|
fveq1d |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) = ( 𝐷 ‘ 𝑧 ) ) |
78 |
|
fvex |
⊢ ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) ∈ V |
79 |
4
|
fvmpt2 |
⊢ ( ( 𝑧 ∈ 𝐶 ∧ ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) ∈ V ) → ( 𝐷 ‘ 𝑧 ) = ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) ) |
80 |
78 79
|
mpan2 |
⊢ ( 𝑧 ∈ 𝐶 → ( 𝐷 ‘ 𝑧 ) = ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) ) |
81 |
77 80
|
sylan9eq |
⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) ∧ 𝑧 ∈ 𝐶 ) → ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) = ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) ) |
82 |
70
|
fveq2d |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → ( 2nd ‘ 𝑦 ) = ( 2nd ‘ 〈 𝐷 , 𝑅 〉 ) ) |
83 |
|
op2ndg |
⊢ ( ( 𝐷 ∈ ( 𝐴 ↑m 𝐶 ) ∧ 𝑅 ∈ ( 𝐵 ↑m 𝐶 ) ) → ( 2nd ‘ 〈 𝐷 , 𝑅 〉 ) = 𝑅 ) |
84 |
72 73 83
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → ( 2nd ‘ 〈 𝐷 , 𝑅 〉 ) = 𝑅 ) |
85 |
82 84
|
eqtrd |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → ( 2nd ‘ 𝑦 ) = 𝑅 ) |
86 |
85
|
fveq1d |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) = ( 𝑅 ‘ 𝑧 ) ) |
87 |
|
fvex |
⊢ ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) ∈ V |
88 |
5
|
fvmpt2 |
⊢ ( ( 𝑧 ∈ 𝐶 ∧ ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) ∈ V ) → ( 𝑅 ‘ 𝑧 ) = ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) ) |
89 |
87 88
|
mpan2 |
⊢ ( 𝑧 ∈ 𝐶 → ( 𝑅 ‘ 𝑧 ) = ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) ) |
90 |
86 89
|
sylan9eq |
⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) ∧ 𝑧 ∈ 𝐶 ) → ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) = ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) ) |
91 |
81 90
|
opeq12d |
⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) ∧ 𝑧 ∈ 𝐶 ) → 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 = 〈 ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) , ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) 〉 ) |
92 |
68
|
ffvelrnda |
⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) ∧ 𝑧 ∈ 𝐶 ) → ( 𝑥 ‘ 𝑧 ) ∈ ( 𝐴 × 𝐵 ) ) |
93 |
|
1st2nd2 |
⊢ ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝐴 × 𝐵 ) → ( 𝑥 ‘ 𝑧 ) = 〈 ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) , ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) 〉 ) |
94 |
92 93
|
syl |
⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) ∧ 𝑧 ∈ 𝐶 ) → ( 𝑥 ‘ 𝑧 ) = 〈 ( 1st ‘ ( 𝑥 ‘ 𝑧 ) ) , ( 2nd ‘ ( 𝑥 ‘ 𝑧 ) ) 〉 ) |
95 |
91 94
|
eqtr4d |
⊢ ( ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) ∧ 𝑧 ∈ 𝐶 ) → 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 = ( 𝑥 ‘ 𝑧 ) ) |
96 |
95
|
mpteq2dva |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → ( 𝑧 ∈ 𝐶 ↦ 〈 ( ( 1st ‘ 𝑦 ) ‘ 𝑧 ) , ( ( 2nd ‘ 𝑦 ) ‘ 𝑧 ) 〉 ) = ( 𝑧 ∈ 𝐶 ↦ ( 𝑥 ‘ 𝑧 ) ) ) |
97 |
6 96
|
eqtrid |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → 𝑆 = ( 𝑧 ∈ 𝐶 ↦ ( 𝑥 ‘ 𝑧 ) ) ) |
98 |
69 97
|
eqtr4d |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) ∧ 𝑦 = 〈 𝐷 , 𝑅 〉 ) → 𝑥 = 𝑆 ) |
99 |
66 98
|
impbida |
⊢ ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) ) → ( 𝑥 = 𝑆 ↔ 𝑦 = 〈 𝐷 , 𝑅 〉 ) ) |
100 |
7 10 25 37 99
|
en3i |
⊢ ( ( 𝐴 × 𝐵 ) ↑m 𝐶 ) ≈ ( ( 𝐴 ↑m 𝐶 ) × ( 𝐵 ↑m 𝐶 ) ) |