| Step |
Hyp |
Ref |
Expression |
| 1 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
| 2 |
|
n0 |
⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐵 ) |
| 3 |
1 2
|
anbi12i |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ↔ ( ∃ 𝑥 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 ∈ 𝐵 ) ) |
| 4 |
|
exdistrv |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ↔ ( ∃ 𝑥 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 ∈ 𝐵 ) ) |
| 5 |
3 4
|
bitr4i |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
| 6 |
|
opex |
⊢ 〈 𝑥 , 𝑦 〉 ∈ V |
| 7 |
|
eleq1 |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝑧 ∈ ( 𝐴 × 𝐵 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ) ) |
| 8 |
|
opelxp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
| 9 |
7 8
|
bitrdi |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝑧 ∈ ( 𝐴 × 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 10 |
6 9
|
spcev |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑧 𝑧 ∈ ( 𝐴 × 𝐵 ) ) |
| 11 |
|
n0 |
⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ ( 𝐴 × 𝐵 ) ) |
| 12 |
10 11
|
sylibr |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 13 |
12
|
exlimivv |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 14 |
5 13
|
sylbi |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 15 |
|
xpeq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 × 𝐵 ) = ( ∅ × 𝐵 ) ) |
| 16 |
|
0xp |
⊢ ( ∅ × 𝐵 ) = ∅ |
| 17 |
15 16
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ( 𝐴 × 𝐵 ) = ∅ ) |
| 18 |
17
|
necon3i |
⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → 𝐴 ≠ ∅ ) |
| 19 |
|
xpeq2 |
⊢ ( 𝐵 = ∅ → ( 𝐴 × 𝐵 ) = ( 𝐴 × ∅ ) ) |
| 20 |
|
xp0 |
⊢ ( 𝐴 × ∅ ) = ∅ |
| 21 |
19 20
|
eqtrdi |
⊢ ( 𝐵 = ∅ → ( 𝐴 × 𝐵 ) = ∅ ) |
| 22 |
21
|
necon3i |
⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → 𝐵 ≠ ∅ ) |
| 23 |
18 22
|
jca |
⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ) |
| 24 |
14 23
|
impbii |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ↔ ( 𝐴 × 𝐵 ) ≠ ∅ ) |