Metamath Proof Explorer


Theorem xpord2ind

Description: Induction over the Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 22-Aug-2024)

Ref Expression
Hypotheses xpord2ind.1 𝑅 Fr 𝐴
xpord2ind.2 𝑅 Po 𝐴
xpord2ind.3 𝑅 Se 𝐴
xpord2ind.4 𝑆 Fr 𝐵
xpord2ind.5 𝑆 Po 𝐵
xpord2ind.6 𝑆 Se 𝐵
xpord2ind.7 ( 𝑎 = 𝑐 → ( 𝜑𝜓 ) )
xpord2ind.8 ( 𝑏 = 𝑑 → ( 𝜓𝜒 ) )
xpord2ind.9 ( 𝑎 = 𝑐 → ( 𝜃𝜒 ) )
xpord2ind.11 ( 𝑎 = 𝑋 → ( 𝜑𝜏 ) )
xpord2ind.12 ( 𝑏 = 𝑌 → ( 𝜏𝜂 ) )
xpord2ind.i ( ( 𝑎𝐴𝑏𝐵 ) → ( ( ∀ 𝑐 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑑 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜒 ∧ ∀ 𝑐 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) 𝜓 ∧ ∀ 𝑑 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜃 ) → 𝜑 ) )
Assertion xpord2ind ( ( 𝑋𝐴𝑌𝐵 ) → 𝜂 )

Proof

Step Hyp Ref Expression
1 xpord2ind.1 𝑅 Fr 𝐴
2 xpord2ind.2 𝑅 Po 𝐴
3 xpord2ind.3 𝑅 Se 𝐴
4 xpord2ind.4 𝑆 Fr 𝐵
5 xpord2ind.5 𝑆 Po 𝐵
6 xpord2ind.6 𝑆 Se 𝐵
7 xpord2ind.7 ( 𝑎 = 𝑐 → ( 𝜑𝜓 ) )
8 xpord2ind.8 ( 𝑏 = 𝑑 → ( 𝜓𝜒 ) )
9 xpord2ind.9 ( 𝑎 = 𝑐 → ( 𝜃𝜒 ) )
10 xpord2ind.11 ( 𝑎 = 𝑋 → ( 𝜑𝜏 ) )
11 xpord2ind.12 ( 𝑏 = 𝑌 → ( 𝜏𝜂 ) )
12 xpord2ind.i ( ( 𝑎𝐴𝑏𝐵 ) → ( ( ∀ 𝑐 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑑 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜒 ∧ ∀ 𝑐 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) 𝜓 ∧ ∀ 𝑑 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜃 ) → 𝜑 ) )
13 eqid { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ∧ ( ( ( 1st𝑥 ) 𝑅 ( 1st𝑦 ) ∨ ( 1st𝑥 ) = ( 1st𝑦 ) ) ∧ ( ( 2nd𝑥 ) 𝑆 ( 2nd𝑦 ) ∨ ( 2nd𝑥 ) = ( 2nd𝑦 ) ) ∧ 𝑥𝑦 ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ∧ ( ( ( 1st𝑥 ) 𝑅 ( 1st𝑦 ) ∨ ( 1st𝑥 ) = ( 1st𝑦 ) ) ∧ ( ( 2nd𝑥 ) 𝑆 ( 2nd𝑦 ) ∨ ( 2nd𝑥 ) = ( 2nd𝑦 ) ) ∧ 𝑥𝑦 ) ) }
14 13 1 2 3 4 5 6 7 8 9 10 11 12 xpord2indlem ( ( 𝑋𝐴𝑌𝐵 ) → 𝜂 )