Description: Induction over the Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 22-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xpord2ind.1 | ⊢ 𝑅 Fr 𝐴 | |
xpord2ind.2 | ⊢ 𝑅 Po 𝐴 | ||
xpord2ind.3 | ⊢ 𝑅 Se 𝐴 | ||
xpord2ind.4 | ⊢ 𝑆 Fr 𝐵 | ||
xpord2ind.5 | ⊢ 𝑆 Po 𝐵 | ||
xpord2ind.6 | ⊢ 𝑆 Se 𝐵 | ||
xpord2ind.7 | ⊢ ( 𝑎 = 𝑐 → ( 𝜑 ↔ 𝜓 ) ) | ||
xpord2ind.8 | ⊢ ( 𝑏 = 𝑑 → ( 𝜓 ↔ 𝜒 ) ) | ||
xpord2ind.9 | ⊢ ( 𝑎 = 𝑐 → ( 𝜃 ↔ 𝜒 ) ) | ||
xpord2ind.11 | ⊢ ( 𝑎 = 𝑋 → ( 𝜑 ↔ 𝜏 ) ) | ||
xpord2ind.12 | ⊢ ( 𝑏 = 𝑌 → ( 𝜏 ↔ 𝜂 ) ) | ||
xpord2ind.i | ⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( ( ∀ 𝑐 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑑 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜒 ∧ ∀ 𝑐 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) 𝜓 ∧ ∀ 𝑑 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜃 ) → 𝜑 ) ) | ||
Assertion | xpord2ind | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → 𝜂 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpord2ind.1 | ⊢ 𝑅 Fr 𝐴 | |
2 | xpord2ind.2 | ⊢ 𝑅 Po 𝐴 | |
3 | xpord2ind.3 | ⊢ 𝑅 Se 𝐴 | |
4 | xpord2ind.4 | ⊢ 𝑆 Fr 𝐵 | |
5 | xpord2ind.5 | ⊢ 𝑆 Po 𝐵 | |
6 | xpord2ind.6 | ⊢ 𝑆 Se 𝐵 | |
7 | xpord2ind.7 | ⊢ ( 𝑎 = 𝑐 → ( 𝜑 ↔ 𝜓 ) ) | |
8 | xpord2ind.8 | ⊢ ( 𝑏 = 𝑑 → ( 𝜓 ↔ 𝜒 ) ) | |
9 | xpord2ind.9 | ⊢ ( 𝑎 = 𝑐 → ( 𝜃 ↔ 𝜒 ) ) | |
10 | xpord2ind.11 | ⊢ ( 𝑎 = 𝑋 → ( 𝜑 ↔ 𝜏 ) ) | |
11 | xpord2ind.12 | ⊢ ( 𝑏 = 𝑌 → ( 𝜏 ↔ 𝜂 ) ) | |
12 | xpord2ind.i | ⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( ( ∀ 𝑐 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑑 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜒 ∧ ∀ 𝑐 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) 𝜓 ∧ ∀ 𝑑 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜃 ) → 𝜑 ) ) | |
13 | eqid | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ∧ ( ( ( 1st ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ∧ ( ( 2nd ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ∧ ( ( ( 1st ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ∧ ( ( 2nd ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ) } | |
14 | 13 1 2 3 4 5 6 7 8 9 10 11 12 | xpord2indlem | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → 𝜂 ) |