Metamath Proof Explorer


Theorem xpord3ind

Description: Induction over the triple Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 4-Sep-2024)

Ref Expression
Hypotheses xpord3ind.1 𝑅 Fr 𝐴
xpord3ind.2 𝑅 Po 𝐴
xpord3ind.3 𝑅 Se 𝐴
xpord3ind.4 𝑆 Fr 𝐵
xpord3ind.5 𝑆 Po 𝐵
xpord3ind.6 𝑆 Se 𝐵
xpord3ind.7 𝑇 Fr 𝐶
xpord3ind.8 𝑇 Po 𝐶
xpord3ind.9 𝑇 Se 𝐶
xpord3ind.10 ( 𝑎 = 𝑑 → ( 𝜑𝜓 ) )
xpord3ind.11 ( 𝑏 = 𝑒 → ( 𝜓𝜒 ) )
xpord3ind.12 ( 𝑐 = 𝑓 → ( 𝜒𝜃 ) )
xpord3ind.13 ( 𝑎 = 𝑑 → ( 𝜏𝜃 ) )
xpord3ind.14 ( 𝑏 = 𝑒 → ( 𝜂𝜏 ) )
xpord3ind.15 ( 𝑏 = 𝑒 → ( 𝜁𝜃 ) )
xpord3ind.16 ( 𝑐 = 𝑓 → ( 𝜎𝜏 ) )
xpord3ind.17 ( 𝑎 = 𝑋 → ( 𝜑𝜌 ) )
xpord3ind.18 ( 𝑏 = 𝑌 → ( 𝜌𝜇 ) )
xpord3ind.19 ( 𝑐 = 𝑍 → ( 𝜇𝜆 ) )
xpord3ind.i ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) → ( ( ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜃 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜒 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜁 ) ∧ ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) 𝜓 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜏 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜎 ) ∧ ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜂 ) → 𝜑 ) )
Assertion xpord3ind ( ( 𝑋𝐴𝑌𝐵𝑍𝐶 ) → 𝜆 )

Proof

Step Hyp Ref Expression
1 xpord3ind.1 𝑅 Fr 𝐴
2 xpord3ind.2 𝑅 Po 𝐴
3 xpord3ind.3 𝑅 Se 𝐴
4 xpord3ind.4 𝑆 Fr 𝐵
5 xpord3ind.5 𝑆 Po 𝐵
6 xpord3ind.6 𝑆 Se 𝐵
7 xpord3ind.7 𝑇 Fr 𝐶
8 xpord3ind.8 𝑇 Po 𝐶
9 xpord3ind.9 𝑇 Se 𝐶
10 xpord3ind.10 ( 𝑎 = 𝑑 → ( 𝜑𝜓 ) )
11 xpord3ind.11 ( 𝑏 = 𝑒 → ( 𝜓𝜒 ) )
12 xpord3ind.12 ( 𝑐 = 𝑓 → ( 𝜒𝜃 ) )
13 xpord3ind.13 ( 𝑎 = 𝑑 → ( 𝜏𝜃 ) )
14 xpord3ind.14 ( 𝑏 = 𝑒 → ( 𝜂𝜏 ) )
15 xpord3ind.15 ( 𝑏 = 𝑒 → ( 𝜁𝜃 ) )
16 xpord3ind.16 ( 𝑐 = 𝑓 → ( 𝜎𝜏 ) )
17 xpord3ind.17 ( 𝑎 = 𝑋 → ( 𝜑𝜌 ) )
18 xpord3ind.18 ( 𝑏 = 𝑌 → ( 𝜌𝜇 ) )
19 xpord3ind.19 ( 𝑐 = 𝑍 → ( 𝜇𝜆 ) )
20 xpord3ind.i ( ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) → ( ( ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜃 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜒 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜁 ) ∧ ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) 𝜓 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜏 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜎 ) ∧ ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜂 ) → 𝜑 ) )
21 simp1 ( ( 𝑋𝐴𝑌𝐵𝑍𝐶 ) → 𝑋𝐴 )
22 simp2 ( ( 𝑋𝐴𝑌𝐵𝑍𝐶 ) → 𝑌𝐵 )
23 simp3 ( ( 𝑋𝐴𝑌𝐵𝑍𝐶 ) → 𝑍𝐶 )
24 ax-1 ( 𝑅 Fr 𝐴 → ( ( 𝑋𝐴𝑌𝐵𝑍𝐶 ) → 𝑅 Fr 𝐴 ) )
25 1 24 ax-mp ( ( 𝑋𝐴𝑌𝐵𝑍𝐶 ) → 𝑅 Fr 𝐴 )
26 2 a1i ( ( 𝑋𝐴𝑌𝐵𝑍𝐶 ) → 𝑅 Po 𝐴 )
27 3 a1i ( ( 𝑋𝐴𝑌𝐵𝑍𝐶 ) → 𝑅 Se 𝐴 )
28 4 a1i ( ( 𝑋𝐴𝑌𝐵𝑍𝐶 ) → 𝑆 Fr 𝐵 )
29 5 a1i ( ( 𝑋𝐴𝑌𝐵𝑍𝐶 ) → 𝑆 Po 𝐵 )
30 6 a1i ( ( 𝑋𝐴𝑌𝐵𝑍𝐶 ) → 𝑆 Se 𝐵 )
31 7 a1i ( ( 𝑋𝐴𝑌𝐵𝑍𝐶 ) → 𝑇 Fr 𝐶 )
32 8 a1i ( ( 𝑋𝐴𝑌𝐵𝑍𝐶 ) → 𝑇 Po 𝐶 )
33 9 a1i ( ( 𝑋𝐴𝑌𝐵𝑍𝐶 ) → 𝑇 Se 𝐶 )
34 20 adantl ( ( ( 𝑋𝐴𝑌𝐵𝑍𝐶 ) ∧ ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ) → ( ( ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜃 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜒 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜁 ) ∧ ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) 𝜓 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜏 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜎 ) ∧ ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜂 ) → 𝜑 ) )
35 21 22 23 25 26 27 28 29 30 31 32 33 10 11 12 13 14 15 16 17 18 19 34 xpord3indd ( ( 𝑋𝐴𝑌𝐵𝑍𝐶 ) → 𝜆 )