Step |
Hyp |
Ref |
Expression |
1 |
|
xpord3ind.1 |
⊢ 𝑅 Fr 𝐴 |
2 |
|
xpord3ind.2 |
⊢ 𝑅 Po 𝐴 |
3 |
|
xpord3ind.3 |
⊢ 𝑅 Se 𝐴 |
4 |
|
xpord3ind.4 |
⊢ 𝑆 Fr 𝐵 |
5 |
|
xpord3ind.5 |
⊢ 𝑆 Po 𝐵 |
6 |
|
xpord3ind.6 |
⊢ 𝑆 Se 𝐵 |
7 |
|
xpord3ind.7 |
⊢ 𝑇 Fr 𝐶 |
8 |
|
xpord3ind.8 |
⊢ 𝑇 Po 𝐶 |
9 |
|
xpord3ind.9 |
⊢ 𝑇 Se 𝐶 |
10 |
|
xpord3ind.10 |
⊢ ( 𝑎 = 𝑑 → ( 𝜑 ↔ 𝜓 ) ) |
11 |
|
xpord3ind.11 |
⊢ ( 𝑏 = 𝑒 → ( 𝜓 ↔ 𝜒 ) ) |
12 |
|
xpord3ind.12 |
⊢ ( 𝑐 = 𝑓 → ( 𝜒 ↔ 𝜃 ) ) |
13 |
|
xpord3ind.13 |
⊢ ( 𝑎 = 𝑑 → ( 𝜏 ↔ 𝜃 ) ) |
14 |
|
xpord3ind.14 |
⊢ ( 𝑏 = 𝑒 → ( 𝜂 ↔ 𝜏 ) ) |
15 |
|
xpord3ind.15 |
⊢ ( 𝑏 = 𝑒 → ( 𝜁 ↔ 𝜃 ) ) |
16 |
|
xpord3ind.16 |
⊢ ( 𝑐 = 𝑓 → ( 𝜎 ↔ 𝜏 ) ) |
17 |
|
xpord3ind.17 |
⊢ ( 𝑎 = 𝑋 → ( 𝜑 ↔ 𝜌 ) ) |
18 |
|
xpord3ind.18 |
⊢ ( 𝑏 = 𝑌 → ( 𝜌 ↔ 𝜇 ) ) |
19 |
|
xpord3ind.19 |
⊢ ( 𝑐 = 𝑍 → ( 𝜇 ↔ 𝜆 ) ) |
20 |
|
xpord3ind.i |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) → ( ( ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜃 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜒 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜁 ) ∧ ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) 𝜓 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜏 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜎 ) ∧ ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜂 ) → 𝜑 ) ) |
21 |
|
simp1 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶 ) → 𝑋 ∈ 𝐴 ) |
22 |
|
simp2 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶 ) → 𝑌 ∈ 𝐵 ) |
23 |
|
simp3 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶 ) → 𝑍 ∈ 𝐶 ) |
24 |
|
ax-1 |
⊢ ( 𝑅 Fr 𝐴 → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶 ) → 𝑅 Fr 𝐴 ) ) |
25 |
1 24
|
ax-mp |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶 ) → 𝑅 Fr 𝐴 ) |
26 |
2
|
a1i |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶 ) → 𝑅 Po 𝐴 ) |
27 |
3
|
a1i |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶 ) → 𝑅 Se 𝐴 ) |
28 |
4
|
a1i |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶 ) → 𝑆 Fr 𝐵 ) |
29 |
5
|
a1i |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶 ) → 𝑆 Po 𝐵 ) |
30 |
6
|
a1i |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶 ) → 𝑆 Se 𝐵 ) |
31 |
7
|
a1i |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶 ) → 𝑇 Fr 𝐶 ) |
32 |
8
|
a1i |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶 ) → 𝑇 Po 𝐶 ) |
33 |
9
|
a1i |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶 ) → 𝑇 Se 𝐶 ) |
34 |
20
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( ( ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜃 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜒 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜁 ) ∧ ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) 𝜓 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜏 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜎 ) ∧ ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜂 ) → 𝜑 ) ) |
35 |
21 22 23 25 26 27 28 29 30 31 32 33 10 11 12 13 14 15 16 17 18 19 34
|
xpord3indd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶 ) → 𝜆 ) |