Metamath Proof Explorer


Theorem xpord3indd

Description: Induction over the triple Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 2-Feb-2025)

Ref Expression
Hypotheses xpord3indd.x ( 𝜅𝑋𝐴 )
xpord3indd.y ( 𝜅𝑌𝐵 )
xpord3indd.z ( 𝜅𝑍𝐶 )
xpord3indd.1 ( 𝜅𝑅 Fr 𝐴 )
xpord3indd.2 ( 𝜅𝑅 Po 𝐴 )
xpord3indd.3 ( 𝜅𝑅 Se 𝐴 )
xpord3indd.4 ( 𝜅𝑆 Fr 𝐵 )
xpord3indd.5 ( 𝜅𝑆 Po 𝐵 )
xpord3indd.6 ( 𝜅𝑆 Se 𝐵 )
xpord3indd.7 ( 𝜅𝑇 Fr 𝐶 )
xpord3indd.8 ( 𝜅𝑇 Po 𝐶 )
xpord3indd.9 ( 𝜅𝑇 Se 𝐶 )
xpord3indd.10 ( 𝑎 = 𝑑 → ( 𝜑𝜓 ) )
xpord3indd.11 ( 𝑏 = 𝑒 → ( 𝜓𝜒 ) )
xpord3indd.12 ( 𝑐 = 𝑓 → ( 𝜒𝜃 ) )
xpord3indd.13 ( 𝑎 = 𝑑 → ( 𝜏𝜃 ) )
xpord3indd.14 ( 𝑏 = 𝑒 → ( 𝜂𝜏 ) )
xpord3indd.15 ( 𝑏 = 𝑒 → ( 𝜁𝜃 ) )
xpord3indd.16 ( 𝑐 = 𝑓 → ( 𝜎𝜏 ) )
xpord3indd.17 ( 𝑎 = 𝑋 → ( 𝜑𝜌 ) )
xpord3indd.18 ( 𝑏 = 𝑌 → ( 𝜌𝜇 ) )
xpord3indd.19 ( 𝑐 = 𝑍 → ( 𝜇𝜆 ) )
xpord3indd.i ( ( 𝜅 ∧ ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ) → ( ( ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜃 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜒 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜁 ) ∧ ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) 𝜓 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜏 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜎 ) ∧ ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜂 ) → 𝜑 ) )
Assertion xpord3indd ( 𝜅𝜆 )

Proof

Step Hyp Ref Expression
1 xpord3indd.x ( 𝜅𝑋𝐴 )
2 xpord3indd.y ( 𝜅𝑌𝐵 )
3 xpord3indd.z ( 𝜅𝑍𝐶 )
4 xpord3indd.1 ( 𝜅𝑅 Fr 𝐴 )
5 xpord3indd.2 ( 𝜅𝑅 Po 𝐴 )
6 xpord3indd.3 ( 𝜅𝑅 Se 𝐴 )
7 xpord3indd.4 ( 𝜅𝑆 Fr 𝐵 )
8 xpord3indd.5 ( 𝜅𝑆 Po 𝐵 )
9 xpord3indd.6 ( 𝜅𝑆 Se 𝐵 )
10 xpord3indd.7 ( 𝜅𝑇 Fr 𝐶 )
11 xpord3indd.8 ( 𝜅𝑇 Po 𝐶 )
12 xpord3indd.9 ( 𝜅𝑇 Se 𝐶 )
13 xpord3indd.10 ( 𝑎 = 𝑑 → ( 𝜑𝜓 ) )
14 xpord3indd.11 ( 𝑏 = 𝑒 → ( 𝜓𝜒 ) )
15 xpord3indd.12 ( 𝑐 = 𝑓 → ( 𝜒𝜃 ) )
16 xpord3indd.13 ( 𝑎 = 𝑑 → ( 𝜏𝜃 ) )
17 xpord3indd.14 ( 𝑏 = 𝑒 → ( 𝜂𝜏 ) )
18 xpord3indd.15 ( 𝑏 = 𝑒 → ( 𝜁𝜃 ) )
19 xpord3indd.16 ( 𝑐 = 𝑓 → ( 𝜎𝜏 ) )
20 xpord3indd.17 ( 𝑎 = 𝑋 → ( 𝜑𝜌 ) )
21 xpord3indd.18 ( 𝑏 = 𝑌 → ( 𝜌𝜇 ) )
22 xpord3indd.19 ( 𝑐 = 𝑍 → ( 𝜇𝜆 ) )
23 xpord3indd.i ( ( 𝜅 ∧ ( 𝑎𝐴𝑏𝐵𝑐𝐶 ) ) → ( ( ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜃 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜒 ∧ ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜁 ) ∧ ( ∀ 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) 𝜓 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜏 ∧ ∀ 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) 𝜎 ) ∧ ∀ 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) 𝜂 ) → 𝜑 ) )
24 eqid { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ ( ( ( ( 1st ‘ ( 1st𝑥 ) ) 𝑅 ( 1st ‘ ( 1st𝑦 ) ) ∨ ( 1st ‘ ( 1st𝑥 ) ) = ( 1st ‘ ( 1st𝑦 ) ) ) ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑆 ( 2nd ‘ ( 1st𝑦 ) ) ∨ ( 2nd ‘ ( 1st𝑥 ) ) = ( 2nd ‘ ( 1st𝑦 ) ) ) ∧ ( ( 2nd𝑥 ) 𝑇 ( 2nd𝑦 ) ∨ ( 2nd𝑥 ) = ( 2nd𝑦 ) ) ) ∧ 𝑥𝑦 ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ ( ( ( ( 1st ‘ ( 1st𝑥 ) ) 𝑅 ( 1st ‘ ( 1st𝑦 ) ) ∨ ( 1st ‘ ( 1st𝑥 ) ) = ( 1st ‘ ( 1st𝑦 ) ) ) ∧ ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑆 ( 2nd ‘ ( 1st𝑦 ) ) ∨ ( 2nd ‘ ( 1st𝑥 ) ) = ( 2nd ‘ ( 1st𝑦 ) ) ) ∧ ( ( 2nd𝑥 ) 𝑇 ( 2nd𝑦 ) ∨ ( 2nd𝑥 ) = ( 2nd𝑦 ) ) ) ∧ 𝑥𝑦 ) ) }
25 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 xpord3inddlem ( 𝜅𝜆 )