Step |
Hyp |
Ref |
Expression |
1 |
|
xpord3.1 |
⊢ 𝑈 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑦 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ ( ( ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ( 1st ‘ ( 1st ‘ 𝑦 ) ) ∨ ( 1st ‘ ( 1st ‘ 𝑥 ) ) = ( 1st ‘ ( 1st ‘ 𝑦 ) ) ) ∧ ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑆 ( 2nd ‘ ( 1st ‘ 𝑦 ) ) ∨ ( 2nd ‘ ( 1st ‘ 𝑥 ) ) = ( 2nd ‘ ( 1st ‘ 𝑦 ) ) ) ∧ ( ( 2nd ‘ 𝑥 ) 𝑇 ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ) ∧ 𝑥 ≠ 𝑦 ) ) } |
2 |
|
oteq1 |
⊢ ( 𝑎 = 𝑋 → 〈 𝑎 , 𝑏 , 𝑐 〉 = 〈 𝑋 , 𝑏 , 𝑐 〉 ) |
3 |
|
predeq3 |
⊢ ( 〈 𝑎 , 𝑏 , 𝑐 〉 = 〈 𝑋 , 𝑏 , 𝑐 〉 → Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 𝑎 , 𝑏 , 𝑐 〉 ) = Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 𝑋 , 𝑏 , 𝑐 〉 ) ) |
4 |
2 3
|
syl |
⊢ ( 𝑎 = 𝑋 → Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 𝑎 , 𝑏 , 𝑐 〉 ) = Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 𝑋 , 𝑏 , 𝑐 〉 ) ) |
5 |
|
predeq3 |
⊢ ( 𝑎 = 𝑋 → Pred ( 𝑅 , 𝐴 , 𝑎 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
6 |
|
sneq |
⊢ ( 𝑎 = 𝑋 → { 𝑎 } = { 𝑋 } ) |
7 |
5 6
|
uneq12d |
⊢ ( 𝑎 = 𝑋 → ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) = ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ { 𝑋 } ) ) |
8 |
7
|
xpeq1d |
⊢ ( 𝑎 = 𝑋 → ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) = ( ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ { 𝑋 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ) |
9 |
8
|
xpeq1d |
⊢ ( 𝑎 = 𝑋 → ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) = ( ( ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ { 𝑋 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ) |
10 |
2
|
sneqd |
⊢ ( 𝑎 = 𝑋 → { 〈 𝑎 , 𝑏 , 𝑐 〉 } = { 〈 𝑋 , 𝑏 , 𝑐 〉 } ) |
11 |
9 10
|
difeq12d |
⊢ ( 𝑎 = 𝑋 → ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑎 , 𝑏 , 𝑐 〉 } ) = ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ { 𝑋 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑋 , 𝑏 , 𝑐 〉 } ) ) |
12 |
4 11
|
eqeq12d |
⊢ ( 𝑎 = 𝑋 → ( Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 𝑎 , 𝑏 , 𝑐 〉 ) = ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑎 , 𝑏 , 𝑐 〉 } ) ↔ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 𝑋 , 𝑏 , 𝑐 〉 ) = ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ { 𝑋 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑋 , 𝑏 , 𝑐 〉 } ) ) ) |
13 |
|
oteq2 |
⊢ ( 𝑏 = 𝑌 → 〈 𝑋 , 𝑏 , 𝑐 〉 = 〈 𝑋 , 𝑌 , 𝑐 〉 ) |
14 |
|
predeq3 |
⊢ ( 〈 𝑋 , 𝑏 , 𝑐 〉 = 〈 𝑋 , 𝑌 , 𝑐 〉 → Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 𝑋 , 𝑏 , 𝑐 〉 ) = Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 𝑋 , 𝑌 , 𝑐 〉 ) ) |
15 |
13 14
|
syl |
⊢ ( 𝑏 = 𝑌 → Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 𝑋 , 𝑏 , 𝑐 〉 ) = Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 𝑋 , 𝑌 , 𝑐 〉 ) ) |
16 |
|
predeq3 |
⊢ ( 𝑏 = 𝑌 → Pred ( 𝑆 , 𝐵 , 𝑏 ) = Pred ( 𝑆 , 𝐵 , 𝑌 ) ) |
17 |
|
sneq |
⊢ ( 𝑏 = 𝑌 → { 𝑏 } = { 𝑌 } ) |
18 |
16 17
|
uneq12d |
⊢ ( 𝑏 = 𝑌 → ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) = ( Pred ( 𝑆 , 𝐵 , 𝑌 ) ∪ { 𝑌 } ) ) |
19 |
18
|
xpeq2d |
⊢ ( 𝑏 = 𝑌 → ( ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ { 𝑋 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) = ( ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ { 𝑋 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑌 ) ∪ { 𝑌 } ) ) ) |
20 |
19
|
xpeq1d |
⊢ ( 𝑏 = 𝑌 → ( ( ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ { 𝑋 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) = ( ( ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ { 𝑋 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑌 ) ∪ { 𝑌 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ) |
21 |
13
|
sneqd |
⊢ ( 𝑏 = 𝑌 → { 〈 𝑋 , 𝑏 , 𝑐 〉 } = { 〈 𝑋 , 𝑌 , 𝑐 〉 } ) |
22 |
20 21
|
difeq12d |
⊢ ( 𝑏 = 𝑌 → ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ { 𝑋 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑋 , 𝑏 , 𝑐 〉 } ) = ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ { 𝑋 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑌 ) ∪ { 𝑌 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑋 , 𝑌 , 𝑐 〉 } ) ) |
23 |
15 22
|
eqeq12d |
⊢ ( 𝑏 = 𝑌 → ( Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 𝑋 , 𝑏 , 𝑐 〉 ) = ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ { 𝑋 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑋 , 𝑏 , 𝑐 〉 } ) ↔ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 𝑋 , 𝑌 , 𝑐 〉 ) = ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ { 𝑋 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑌 ) ∪ { 𝑌 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑋 , 𝑌 , 𝑐 〉 } ) ) ) |
24 |
|
oteq3 |
⊢ ( 𝑐 = 𝑍 → 〈 𝑋 , 𝑌 , 𝑐 〉 = 〈 𝑋 , 𝑌 , 𝑍 〉 ) |
25 |
|
predeq3 |
⊢ ( 〈 𝑋 , 𝑌 , 𝑐 〉 = 〈 𝑋 , 𝑌 , 𝑍 〉 → Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 𝑋 , 𝑌 , 𝑐 〉 ) = Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 𝑋 , 𝑌 , 𝑍 〉 ) ) |
26 |
24 25
|
syl |
⊢ ( 𝑐 = 𝑍 → Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 𝑋 , 𝑌 , 𝑐 〉 ) = Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 𝑋 , 𝑌 , 𝑍 〉 ) ) |
27 |
|
predeq3 |
⊢ ( 𝑐 = 𝑍 → Pred ( 𝑇 , 𝐶 , 𝑐 ) = Pred ( 𝑇 , 𝐶 , 𝑍 ) ) |
28 |
|
sneq |
⊢ ( 𝑐 = 𝑍 → { 𝑐 } = { 𝑍 } ) |
29 |
27 28
|
uneq12d |
⊢ ( 𝑐 = 𝑍 → ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) = ( Pred ( 𝑇 , 𝐶 , 𝑍 ) ∪ { 𝑍 } ) ) |
30 |
29
|
xpeq2d |
⊢ ( 𝑐 = 𝑍 → ( ( ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ { 𝑋 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑌 ) ∪ { 𝑌 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) = ( ( ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ { 𝑋 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑌 ) ∪ { 𝑌 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑍 ) ∪ { 𝑍 } ) ) ) |
31 |
24
|
sneqd |
⊢ ( 𝑐 = 𝑍 → { 〈 𝑋 , 𝑌 , 𝑐 〉 } = { 〈 𝑋 , 𝑌 , 𝑍 〉 } ) |
32 |
30 31
|
difeq12d |
⊢ ( 𝑐 = 𝑍 → ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ { 𝑋 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑌 ) ∪ { 𝑌 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑋 , 𝑌 , 𝑐 〉 } ) = ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ { 𝑋 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑌 ) ∪ { 𝑌 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑍 ) ∪ { 𝑍 } ) ) ∖ { 〈 𝑋 , 𝑌 , 𝑍 〉 } ) ) |
33 |
26 32
|
eqeq12d |
⊢ ( 𝑐 = 𝑍 → ( Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 𝑋 , 𝑌 , 𝑐 〉 ) = ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ { 𝑋 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑌 ) ∪ { 𝑌 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑋 , 𝑌 , 𝑐 〉 } ) ↔ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 𝑋 , 𝑌 , 𝑍 〉 ) = ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ { 𝑋 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑌 ) ∪ { 𝑌 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑍 ) ∪ { 𝑍 } ) ) ∖ { 〈 𝑋 , 𝑌 , 𝑍 〉 } ) ) ) |
34 |
|
el2xptp |
⊢ ( 𝑞 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ↔ ∃ 𝑑 ∈ 𝐴 ∃ 𝑒 ∈ 𝐵 ∃ 𝑓 ∈ 𝐶 𝑞 = 〈 𝑑 , 𝑒 , 𝑓 〉 ) |
35 |
|
df-3an |
⊢ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑎 ∨ 𝑑 = 𝑎 ) ∧ ( 𝑒 𝑆 𝑏 ∨ 𝑒 = 𝑏 ) ∧ ( 𝑓 𝑇 𝑐 ∨ 𝑓 = 𝑐 ) ) ∧ ( 𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐 ) ) ) ↔ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) ∧ ( ( ( 𝑑 𝑅 𝑎 ∨ 𝑑 = 𝑎 ) ∧ ( 𝑒 𝑆 𝑏 ∨ 𝑒 = 𝑏 ) ∧ ( 𝑓 𝑇 𝑐 ∨ 𝑓 = 𝑐 ) ) ∧ ( 𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐 ) ) ) ) |
36 |
|
simplrl |
⊢ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ) ) ∧ 𝑓 ∈ 𝐶 ) → 𝑑 ∈ 𝐴 ) |
37 |
|
simplrr |
⊢ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ) ) ∧ 𝑓 ∈ 𝐶 ) → 𝑒 ∈ 𝐵 ) |
38 |
|
simpr |
⊢ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ) ) ∧ 𝑓 ∈ 𝐶 ) → 𝑓 ∈ 𝐶 ) |
39 |
36 37 38
|
3jca |
⊢ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ) ) ∧ 𝑓 ∈ 𝐶 ) → ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ) |
40 |
|
simpll |
⊢ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ) ) ∧ 𝑓 ∈ 𝐶 ) → ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) |
41 |
39 40
|
jca |
⊢ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ) ) ∧ 𝑓 ∈ 𝐶 ) → ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) ) |
42 |
41
|
biantrurd |
⊢ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ) ) ∧ 𝑓 ∈ 𝐶 ) → ( ( ( ( 𝑑 𝑅 𝑎 ∨ 𝑑 = 𝑎 ) ∧ ( 𝑒 𝑆 𝑏 ∨ 𝑒 = 𝑏 ) ∧ ( 𝑓 𝑇 𝑐 ∨ 𝑓 = 𝑐 ) ) ∧ ( 𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐 ) ) ↔ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) ∧ ( ( ( 𝑑 𝑅 𝑎 ∨ 𝑑 = 𝑎 ) ∧ ( 𝑒 𝑆 𝑏 ∨ 𝑒 = 𝑏 ) ∧ ( 𝑓 𝑇 𝑐 ∨ 𝑓 = 𝑐 ) ) ∧ ( 𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐 ) ) ) ) ) |
43 |
36
|
biantrurd |
⊢ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ) ) ∧ 𝑓 ∈ 𝐶 ) → ( 𝑑 𝑅 𝑎 ↔ ( 𝑑 ∈ 𝐴 ∧ 𝑑 𝑅 𝑎 ) ) ) |
44 |
43
|
orbi1d |
⊢ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ) ) ∧ 𝑓 ∈ 𝐶 ) → ( ( 𝑑 𝑅 𝑎 ∨ 𝑑 = 𝑎 ) ↔ ( ( 𝑑 ∈ 𝐴 ∧ 𝑑 𝑅 𝑎 ) ∨ 𝑑 = 𝑎 ) ) ) |
45 |
37
|
biantrurd |
⊢ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ) ) ∧ 𝑓 ∈ 𝐶 ) → ( 𝑒 𝑆 𝑏 ↔ ( 𝑒 ∈ 𝐵 ∧ 𝑒 𝑆 𝑏 ) ) ) |
46 |
45
|
orbi1d |
⊢ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ) ) ∧ 𝑓 ∈ 𝐶 ) → ( ( 𝑒 𝑆 𝑏 ∨ 𝑒 = 𝑏 ) ↔ ( ( 𝑒 ∈ 𝐵 ∧ 𝑒 𝑆 𝑏 ) ∨ 𝑒 = 𝑏 ) ) ) |
47 |
38
|
biantrurd |
⊢ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ) ) ∧ 𝑓 ∈ 𝐶 ) → ( 𝑓 𝑇 𝑐 ↔ ( 𝑓 ∈ 𝐶 ∧ 𝑓 𝑇 𝑐 ) ) ) |
48 |
47
|
orbi1d |
⊢ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ) ) ∧ 𝑓 ∈ 𝐶 ) → ( ( 𝑓 𝑇 𝑐 ∨ 𝑓 = 𝑐 ) ↔ ( ( 𝑓 ∈ 𝐶 ∧ 𝑓 𝑇 𝑐 ) ∨ 𝑓 = 𝑐 ) ) ) |
49 |
44 46 48
|
3anbi123d |
⊢ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ) ) ∧ 𝑓 ∈ 𝐶 ) → ( ( ( 𝑑 𝑅 𝑎 ∨ 𝑑 = 𝑎 ) ∧ ( 𝑒 𝑆 𝑏 ∨ 𝑒 = 𝑏 ) ∧ ( 𝑓 𝑇 𝑐 ∨ 𝑓 = 𝑐 ) ) ↔ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑑 𝑅 𝑎 ) ∨ 𝑑 = 𝑎 ) ∧ ( ( 𝑒 ∈ 𝐵 ∧ 𝑒 𝑆 𝑏 ) ∨ 𝑒 = 𝑏 ) ∧ ( ( 𝑓 ∈ 𝐶 ∧ 𝑓 𝑇 𝑐 ) ∨ 𝑓 = 𝑐 ) ) ) ) |
50 |
49
|
anbi1d |
⊢ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ) ) ∧ 𝑓 ∈ 𝐶 ) → ( ( ( ( 𝑑 𝑅 𝑎 ∨ 𝑑 = 𝑎 ) ∧ ( 𝑒 𝑆 𝑏 ∨ 𝑒 = 𝑏 ) ∧ ( 𝑓 𝑇 𝑐 ∨ 𝑓 = 𝑐 ) ) ∧ ( 𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐 ) ) ↔ ( ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑑 𝑅 𝑎 ) ∨ 𝑑 = 𝑎 ) ∧ ( ( 𝑒 ∈ 𝐵 ∧ 𝑒 𝑆 𝑏 ) ∨ 𝑒 = 𝑏 ) ∧ ( ( 𝑓 ∈ 𝐶 ∧ 𝑓 𝑇 𝑐 ) ∨ 𝑓 = 𝑐 ) ) ∧ ( 𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐 ) ) ) ) |
51 |
42 50
|
bitr3d |
⊢ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ) ) ∧ 𝑓 ∈ 𝐶 ) → ( ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) ∧ ( ( ( 𝑑 𝑅 𝑎 ∨ 𝑑 = 𝑎 ) ∧ ( 𝑒 𝑆 𝑏 ∨ 𝑒 = 𝑏 ) ∧ ( 𝑓 𝑇 𝑐 ∨ 𝑓 = 𝑐 ) ) ∧ ( 𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐 ) ) ) ↔ ( ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑑 𝑅 𝑎 ) ∨ 𝑑 = 𝑎 ) ∧ ( ( 𝑒 ∈ 𝐵 ∧ 𝑒 𝑆 𝑏 ) ∨ 𝑒 = 𝑏 ) ∧ ( ( 𝑓 ∈ 𝐶 ∧ 𝑓 𝑇 𝑐 ) ∨ 𝑓 = 𝑐 ) ) ∧ ( 𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐 ) ) ) ) |
52 |
35 51
|
bitrid |
⊢ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ) ) ∧ 𝑓 ∈ 𝐶 ) → ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑎 ∨ 𝑑 = 𝑎 ) ∧ ( 𝑒 𝑆 𝑏 ∨ 𝑒 = 𝑏 ) ∧ ( 𝑓 𝑇 𝑐 ∨ 𝑓 = 𝑐 ) ) ∧ ( 𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐 ) ) ) ↔ ( ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑑 𝑅 𝑎 ) ∨ 𝑑 = 𝑎 ) ∧ ( ( 𝑒 ∈ 𝐵 ∧ 𝑒 𝑆 𝑏 ) ∨ 𝑒 = 𝑏 ) ∧ ( ( 𝑓 ∈ 𝐶 ∧ 𝑓 𝑇 𝑐 ) ∨ 𝑓 = 𝑐 ) ) ∧ ( 𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐 ) ) ) ) |
53 |
|
breq1 |
⊢ ( 𝑞 = 〈 𝑑 , 𝑒 , 𝑓 〉 → ( 𝑞 𝑈 〈 𝑎 , 𝑏 , 𝑐 〉 ↔ 〈 𝑑 , 𝑒 , 𝑓 〉 𝑈 〈 𝑎 , 𝑏 , 𝑐 〉 ) ) |
54 |
1
|
xpord3lem |
⊢ ( 〈 𝑑 , 𝑒 , 𝑓 〉 𝑈 〈 𝑎 , 𝑏 , 𝑐 〉 ↔ ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑎 ∨ 𝑑 = 𝑎 ) ∧ ( 𝑒 𝑆 𝑏 ∨ 𝑒 = 𝑏 ) ∧ ( 𝑓 𝑇 𝑐 ∨ 𝑓 = 𝑐 ) ) ∧ ( 𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐 ) ) ) ) |
55 |
53 54
|
bitrdi |
⊢ ( 𝑞 = 〈 𝑑 , 𝑒 , 𝑓 〉 → ( 𝑞 𝑈 〈 𝑎 , 𝑏 , 𝑐 〉 ↔ ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑎 ∨ 𝑑 = 𝑎 ) ∧ ( 𝑒 𝑆 𝑏 ∨ 𝑒 = 𝑏 ) ∧ ( 𝑓 𝑇 𝑐 ∨ 𝑓 = 𝑐 ) ) ∧ ( 𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐 ) ) ) ) ) |
56 |
|
eleq1 |
⊢ ( 𝑞 = 〈 𝑑 , 𝑒 , 𝑓 〉 → ( 𝑞 ∈ ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑎 , 𝑏 , 𝑐 〉 } ) ↔ 〈 𝑑 , 𝑒 , 𝑓 〉 ∈ ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑎 , 𝑏 , 𝑐 〉 } ) ) ) |
57 |
|
eldifsn |
⊢ ( 〈 𝑑 , 𝑒 , 𝑓 〉 ∈ ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑎 , 𝑏 , 𝑐 〉 } ) ↔ ( 〈 𝑑 , 𝑒 , 𝑓 〉 ∈ ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∧ 〈 𝑑 , 𝑒 , 𝑓 〉 ≠ 〈 𝑎 , 𝑏 , 𝑐 〉 ) ) |
58 |
|
otelxp |
⊢ ( 〈 𝑑 , 𝑒 , 𝑓 〉 ∈ ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ↔ ( 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∧ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∧ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ) |
59 |
|
elun |
⊢ ( 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ↔ ( 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∨ 𝑑 ∈ { 𝑎 } ) ) |
60 |
|
vex |
⊢ 𝑑 ∈ V |
61 |
60
|
elpred |
⊢ ( 𝑎 ∈ V → ( 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ↔ ( 𝑑 ∈ 𝐴 ∧ 𝑑 𝑅 𝑎 ) ) ) |
62 |
61
|
elv |
⊢ ( 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ↔ ( 𝑑 ∈ 𝐴 ∧ 𝑑 𝑅 𝑎 ) ) |
63 |
|
velsn |
⊢ ( 𝑑 ∈ { 𝑎 } ↔ 𝑑 = 𝑎 ) |
64 |
62 63
|
orbi12i |
⊢ ( ( 𝑑 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∨ 𝑑 ∈ { 𝑎 } ) ↔ ( ( 𝑑 ∈ 𝐴 ∧ 𝑑 𝑅 𝑎 ) ∨ 𝑑 = 𝑎 ) ) |
65 |
59 64
|
bitri |
⊢ ( 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ↔ ( ( 𝑑 ∈ 𝐴 ∧ 𝑑 𝑅 𝑎 ) ∨ 𝑑 = 𝑎 ) ) |
66 |
|
elun |
⊢ ( 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ↔ ( 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∨ 𝑒 ∈ { 𝑏 } ) ) |
67 |
|
vex |
⊢ 𝑒 ∈ V |
68 |
67
|
elpred |
⊢ ( 𝑏 ∈ V → ( 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ↔ ( 𝑒 ∈ 𝐵 ∧ 𝑒 𝑆 𝑏 ) ) ) |
69 |
68
|
elv |
⊢ ( 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ↔ ( 𝑒 ∈ 𝐵 ∧ 𝑒 𝑆 𝑏 ) ) |
70 |
|
velsn |
⊢ ( 𝑒 ∈ { 𝑏 } ↔ 𝑒 = 𝑏 ) |
71 |
69 70
|
orbi12i |
⊢ ( ( 𝑒 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∨ 𝑒 ∈ { 𝑏 } ) ↔ ( ( 𝑒 ∈ 𝐵 ∧ 𝑒 𝑆 𝑏 ) ∨ 𝑒 = 𝑏 ) ) |
72 |
66 71
|
bitri |
⊢ ( 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ↔ ( ( 𝑒 ∈ 𝐵 ∧ 𝑒 𝑆 𝑏 ) ∨ 𝑒 = 𝑏 ) ) |
73 |
|
elun |
⊢ ( 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ↔ ( 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ∨ 𝑓 ∈ { 𝑐 } ) ) |
74 |
|
vex |
⊢ 𝑓 ∈ V |
75 |
74
|
elpred |
⊢ ( 𝑐 ∈ V → ( 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ↔ ( 𝑓 ∈ 𝐶 ∧ 𝑓 𝑇 𝑐 ) ) ) |
76 |
75
|
elv |
⊢ ( 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ↔ ( 𝑓 ∈ 𝐶 ∧ 𝑓 𝑇 𝑐 ) ) |
77 |
|
velsn |
⊢ ( 𝑓 ∈ { 𝑐 } ↔ 𝑓 = 𝑐 ) |
78 |
76 77
|
orbi12i |
⊢ ( ( 𝑓 ∈ Pred ( 𝑇 , 𝐶 , 𝑐 ) ∨ 𝑓 ∈ { 𝑐 } ) ↔ ( ( 𝑓 ∈ 𝐶 ∧ 𝑓 𝑇 𝑐 ) ∨ 𝑓 = 𝑐 ) ) |
79 |
73 78
|
bitri |
⊢ ( 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ↔ ( ( 𝑓 ∈ 𝐶 ∧ 𝑓 𝑇 𝑐 ) ∨ 𝑓 = 𝑐 ) ) |
80 |
65 72 79
|
3anbi123i |
⊢ ( ( 𝑑 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∧ 𝑒 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∧ 𝑓 ∈ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ↔ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑑 𝑅 𝑎 ) ∨ 𝑑 = 𝑎 ) ∧ ( ( 𝑒 ∈ 𝐵 ∧ 𝑒 𝑆 𝑏 ) ∨ 𝑒 = 𝑏 ) ∧ ( ( 𝑓 ∈ 𝐶 ∧ 𝑓 𝑇 𝑐 ) ∨ 𝑓 = 𝑐 ) ) ) |
81 |
58 80
|
bitri |
⊢ ( 〈 𝑑 , 𝑒 , 𝑓 〉 ∈ ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ↔ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑑 𝑅 𝑎 ) ∨ 𝑑 = 𝑎 ) ∧ ( ( 𝑒 ∈ 𝐵 ∧ 𝑒 𝑆 𝑏 ) ∨ 𝑒 = 𝑏 ) ∧ ( ( 𝑓 ∈ 𝐶 ∧ 𝑓 𝑇 𝑐 ) ∨ 𝑓 = 𝑐 ) ) ) |
82 |
60 67 74
|
otthne |
⊢ ( 〈 𝑑 , 𝑒 , 𝑓 〉 ≠ 〈 𝑎 , 𝑏 , 𝑐 〉 ↔ ( 𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐 ) ) |
83 |
81 82
|
anbi12i |
⊢ ( ( 〈 𝑑 , 𝑒 , 𝑓 〉 ∈ ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∧ 〈 𝑑 , 𝑒 , 𝑓 〉 ≠ 〈 𝑎 , 𝑏 , 𝑐 〉 ) ↔ ( ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑑 𝑅 𝑎 ) ∨ 𝑑 = 𝑎 ) ∧ ( ( 𝑒 ∈ 𝐵 ∧ 𝑒 𝑆 𝑏 ) ∨ 𝑒 = 𝑏 ) ∧ ( ( 𝑓 ∈ 𝐶 ∧ 𝑓 𝑇 𝑐 ) ∨ 𝑓 = 𝑐 ) ) ∧ ( 𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐 ) ) ) |
84 |
57 83
|
bitri |
⊢ ( 〈 𝑑 , 𝑒 , 𝑓 〉 ∈ ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑎 , 𝑏 , 𝑐 〉 } ) ↔ ( ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑑 𝑅 𝑎 ) ∨ 𝑑 = 𝑎 ) ∧ ( ( 𝑒 ∈ 𝐵 ∧ 𝑒 𝑆 𝑏 ) ∨ 𝑒 = 𝑏 ) ∧ ( ( 𝑓 ∈ 𝐶 ∧ 𝑓 𝑇 𝑐 ) ∨ 𝑓 = 𝑐 ) ) ∧ ( 𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐 ) ) ) |
85 |
56 84
|
bitrdi |
⊢ ( 𝑞 = 〈 𝑑 , 𝑒 , 𝑓 〉 → ( 𝑞 ∈ ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑎 , 𝑏 , 𝑐 〉 } ) ↔ ( ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑑 𝑅 𝑎 ) ∨ 𝑑 = 𝑎 ) ∧ ( ( 𝑒 ∈ 𝐵 ∧ 𝑒 𝑆 𝑏 ) ∨ 𝑒 = 𝑏 ) ∧ ( ( 𝑓 ∈ 𝐶 ∧ 𝑓 𝑇 𝑐 ) ∨ 𝑓 = 𝑐 ) ) ∧ ( 𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐 ) ) ) ) |
86 |
55 85
|
bibi12d |
⊢ ( 𝑞 = 〈 𝑑 , 𝑒 , 𝑓 〉 → ( ( 𝑞 𝑈 〈 𝑎 , 𝑏 , 𝑐 〉 ↔ 𝑞 ∈ ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑎 , 𝑏 , 𝑐 〉 } ) ) ↔ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ∧ 𝑓 ∈ 𝐶 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( ( ( 𝑑 𝑅 𝑎 ∨ 𝑑 = 𝑎 ) ∧ ( 𝑒 𝑆 𝑏 ∨ 𝑒 = 𝑏 ) ∧ ( 𝑓 𝑇 𝑐 ∨ 𝑓 = 𝑐 ) ) ∧ ( 𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐 ) ) ) ↔ ( ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑑 𝑅 𝑎 ) ∨ 𝑑 = 𝑎 ) ∧ ( ( 𝑒 ∈ 𝐵 ∧ 𝑒 𝑆 𝑏 ) ∨ 𝑒 = 𝑏 ) ∧ ( ( 𝑓 ∈ 𝐶 ∧ 𝑓 𝑇 𝑐 ) ∨ 𝑓 = 𝑐 ) ) ∧ ( 𝑑 ≠ 𝑎 ∨ 𝑒 ≠ 𝑏 ∨ 𝑓 ≠ 𝑐 ) ) ) ) ) |
87 |
52 86
|
syl5ibrcom |
⊢ ( ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ) ) ∧ 𝑓 ∈ 𝐶 ) → ( 𝑞 = 〈 𝑑 , 𝑒 , 𝑓 〉 → ( 𝑞 𝑈 〈 𝑎 , 𝑏 , 𝑐 〉 ↔ 𝑞 ∈ ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑎 , 𝑏 , 𝑐 〉 } ) ) ) ) |
88 |
87
|
rexlimdva |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵 ) ) → ( ∃ 𝑓 ∈ 𝐶 𝑞 = 〈 𝑑 , 𝑒 , 𝑓 〉 → ( 𝑞 𝑈 〈 𝑎 , 𝑏 , 𝑐 〉 ↔ 𝑞 ∈ ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑎 , 𝑏 , 𝑐 〉 } ) ) ) ) |
89 |
88
|
rexlimdvva |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) → ( ∃ 𝑑 ∈ 𝐴 ∃ 𝑒 ∈ 𝐵 ∃ 𝑓 ∈ 𝐶 𝑞 = 〈 𝑑 , 𝑒 , 𝑓 〉 → ( 𝑞 𝑈 〈 𝑎 , 𝑏 , 𝑐 〉 ↔ 𝑞 ∈ ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑎 , 𝑏 , 𝑐 〉 } ) ) ) ) |
90 |
34 89
|
biimtrid |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) → ( 𝑞 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → ( 𝑞 𝑈 〈 𝑎 , 𝑏 , 𝑐 〉 ↔ 𝑞 ∈ ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑎 , 𝑏 , 𝑐 〉 } ) ) ) ) |
91 |
90
|
pm5.32d |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) → ( ( 𝑞 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑞 𝑈 〈 𝑎 , 𝑏 , 𝑐 〉 ) ↔ ( 𝑞 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑞 ∈ ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑎 , 𝑏 , 𝑐 〉 } ) ) ) ) |
92 |
|
otex |
⊢ 〈 𝑎 , 𝑏 , 𝑐 〉 ∈ V |
93 |
|
vex |
⊢ 𝑞 ∈ V |
94 |
93
|
elpred |
⊢ ( 〈 𝑎 , 𝑏 , 𝑐 〉 ∈ V → ( 𝑞 ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 𝑎 , 𝑏 , 𝑐 〉 ) ↔ ( 𝑞 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑞 𝑈 〈 𝑎 , 𝑏 , 𝑐 〉 ) ) ) |
95 |
92 94
|
ax-mp |
⊢ ( 𝑞 ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 𝑎 , 𝑏 , 𝑐 〉 ) ↔ ( 𝑞 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑞 𝑈 〈 𝑎 , 𝑏 , 𝑐 〉 ) ) |
96 |
|
elin |
⊢ ( 𝑞 ∈ ( ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∩ ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑎 , 𝑏 , 𝑐 〉 } ) ) ↔ ( 𝑞 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∧ 𝑞 ∈ ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑎 , 𝑏 , 𝑐 〉 } ) ) ) |
97 |
91 95 96
|
3bitr4g |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) → ( 𝑞 ∈ Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 𝑎 , 𝑏 , 𝑐 〉 ) ↔ 𝑞 ∈ ( ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∩ ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑎 , 𝑏 , 𝑐 〉 } ) ) ) ) |
98 |
97
|
eqrdv |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) → Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 𝑎 , 𝑏 , 𝑐 〉 ) = ( ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∩ ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑎 , 𝑏 , 𝑐 〉 } ) ) ) |
99 |
|
predss |
⊢ Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝐴 |
100 |
99
|
a1i |
⊢ ( 𝑎 ∈ 𝐴 → Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝐴 ) |
101 |
|
snssi |
⊢ ( 𝑎 ∈ 𝐴 → { 𝑎 } ⊆ 𝐴 ) |
102 |
100 101
|
unssd |
⊢ ( 𝑎 ∈ 𝐴 → ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ⊆ 𝐴 ) |
103 |
102
|
3ad2ant1 |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) → ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ⊆ 𝐴 ) |
104 |
|
predss |
⊢ Pred ( 𝑆 , 𝐵 , 𝑏 ) ⊆ 𝐵 |
105 |
104
|
a1i |
⊢ ( 𝑏 ∈ 𝐵 → Pred ( 𝑆 , 𝐵 , 𝑏 ) ⊆ 𝐵 ) |
106 |
|
snssi |
⊢ ( 𝑏 ∈ 𝐵 → { 𝑏 } ⊆ 𝐵 ) |
107 |
105 106
|
unssd |
⊢ ( 𝑏 ∈ 𝐵 → ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ⊆ 𝐵 ) |
108 |
107
|
3ad2ant2 |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) → ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ⊆ 𝐵 ) |
109 |
|
xpss12 |
⊢ ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ⊆ 𝐴 ∧ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ⊆ 𝐵 ) → ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ⊆ ( 𝐴 × 𝐵 ) ) |
110 |
103 108 109
|
syl2anc |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) → ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ⊆ ( 𝐴 × 𝐵 ) ) |
111 |
|
predss |
⊢ Pred ( 𝑇 , 𝐶 , 𝑐 ) ⊆ 𝐶 |
112 |
111
|
a1i |
⊢ ( 𝑐 ∈ 𝐶 → Pred ( 𝑇 , 𝐶 , 𝑐 ) ⊆ 𝐶 ) |
113 |
|
snssi |
⊢ ( 𝑐 ∈ 𝐶 → { 𝑐 } ⊆ 𝐶 ) |
114 |
112 113
|
unssd |
⊢ ( 𝑐 ∈ 𝐶 → ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ⊆ 𝐶 ) |
115 |
114
|
3ad2ant3 |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) → ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ⊆ 𝐶 ) |
116 |
|
xpss12 |
⊢ ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ⊆ ( 𝐴 × 𝐵 ) ∧ ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ⊆ 𝐶 ) → ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) |
117 |
110 115 116
|
syl2anc |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) → ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) |
118 |
117
|
ssdifssd |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) → ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑎 , 𝑏 , 𝑐 〉 } ) ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ) |
119 |
|
sseqin2 |
⊢ ( ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑎 , 𝑏 , 𝑐 〉 } ) ⊆ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ↔ ( ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∩ ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑎 , 𝑏 , 𝑐 〉 } ) ) = ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑎 , 𝑏 , 𝑐 〉 } ) ) |
120 |
118 119
|
sylib |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) → ( ( ( 𝐴 × 𝐵 ) × 𝐶 ) ∩ ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑎 , 𝑏 , 𝑐 〉 } ) ) = ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑎 , 𝑏 , 𝑐 〉 } ) ) |
121 |
98 120
|
eqtrd |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) → Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 𝑎 , 𝑏 , 𝑐 〉 ) = ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑐 ) ∪ { 𝑐 } ) ) ∖ { 〈 𝑎 , 𝑏 , 𝑐 〉 } ) ) |
122 |
12 23 33 121
|
vtocl3ga |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶 ) → Pred ( 𝑈 , ( ( 𝐴 × 𝐵 ) × 𝐶 ) , 〈 𝑋 , 𝑌 , 𝑍 〉 ) = ( ( ( ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ { 𝑋 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑌 ) ∪ { 𝑌 } ) ) × ( Pred ( 𝑇 , 𝐶 , 𝑍 ) ∪ { 𝑍 } ) ) ∖ { 〈 𝑋 , 𝑌 , 𝑍 〉 } ) ) |