Step |
Hyp |
Ref |
Expression |
1 |
|
pssss |
⊢ ( 𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵 ) |
2 |
|
pssss |
⊢ ( 𝐶 ⊊ 𝐷 → 𝐶 ⊆ 𝐷 ) |
3 |
|
xpss12 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) → ( 𝐴 × 𝐶 ) ⊆ ( 𝐵 × 𝐷 ) ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷 ) → ( 𝐴 × 𝐶 ) ⊆ ( 𝐵 × 𝐷 ) ) |
5 |
|
simpl |
⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷 ) → 𝐴 ⊊ 𝐵 ) |
6 |
|
pssne |
⊢ ( 𝐴 ⊊ 𝐵 → 𝐴 ≠ 𝐵 ) |
7 |
6
|
necomd |
⊢ ( 𝐴 ⊊ 𝐵 → 𝐵 ≠ 𝐴 ) |
8 |
|
neneq |
⊢ ( 𝐵 ≠ 𝐴 → ¬ 𝐵 = 𝐴 ) |
9 |
8
|
intnanrd |
⊢ ( 𝐵 ≠ 𝐴 → ¬ ( 𝐵 = 𝐴 ∧ 𝐷 = 𝐶 ) ) |
10 |
5 7 9
|
3syl |
⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷 ) → ¬ ( 𝐵 = 𝐴 ∧ 𝐷 = 𝐶 ) ) |
11 |
|
pssn0 |
⊢ ( 𝐴 ⊊ 𝐵 → 𝐵 ≠ ∅ ) |
12 |
|
pssn0 |
⊢ ( 𝐶 ⊊ 𝐷 → 𝐷 ≠ ∅ ) |
13 |
|
xp11 |
⊢ ( ( 𝐵 ≠ ∅ ∧ 𝐷 ≠ ∅ ) → ( ( 𝐵 × 𝐷 ) = ( 𝐴 × 𝐶 ) ↔ ( 𝐵 = 𝐴 ∧ 𝐷 = 𝐶 ) ) ) |
14 |
11 12 13
|
syl2an |
⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷 ) → ( ( 𝐵 × 𝐷 ) = ( 𝐴 × 𝐶 ) ↔ ( 𝐵 = 𝐴 ∧ 𝐷 = 𝐶 ) ) ) |
15 |
10 14
|
mtbird |
⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷 ) → ¬ ( 𝐵 × 𝐷 ) = ( 𝐴 × 𝐶 ) ) |
16 |
|
neqne |
⊢ ( ¬ ( 𝐵 × 𝐷 ) = ( 𝐴 × 𝐶 ) → ( 𝐵 × 𝐷 ) ≠ ( 𝐴 × 𝐶 ) ) |
17 |
16
|
necomd |
⊢ ( ¬ ( 𝐵 × 𝐷 ) = ( 𝐴 × 𝐶 ) → ( 𝐴 × 𝐶 ) ≠ ( 𝐵 × 𝐷 ) ) |
18 |
15 17
|
syl |
⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷 ) → ( 𝐴 × 𝐶 ) ≠ ( 𝐵 × 𝐷 ) ) |
19 |
|
df-pss |
⊢ ( ( 𝐴 × 𝐶 ) ⊊ ( 𝐵 × 𝐷 ) ↔ ( ( 𝐴 × 𝐶 ) ⊆ ( 𝐵 × 𝐷 ) ∧ ( 𝐴 × 𝐶 ) ≠ ( 𝐵 × 𝐷 ) ) ) |
20 |
4 18 19
|
sylanbrc |
⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷 ) → ( 𝐴 × 𝐶 ) ⊊ ( 𝐵 × 𝐷 ) ) |