Step |
Hyp |
Ref |
Expression |
1 |
|
iineq1 |
⊢ ( 𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ ∅ 𝐵 ) |
2 |
|
0iin |
⊢ ∩ 𝑥 ∈ ∅ 𝐵 = V |
3 |
1 2
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 𝐵 = V ) |
4 |
3
|
ineq2d |
⊢ ( 𝐴 = ∅ → ( 𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) = ( 𝐷 ∩ V ) ) |
5 |
|
inv1 |
⊢ ( 𝐷 ∩ V ) = 𝐷 |
6 |
4 5
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ( 𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) = 𝐷 ) |
7 |
6
|
xpeq2d |
⊢ ( 𝐴 = ∅ → ( 𝐶 × ( 𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) ) = ( 𝐶 × 𝐷 ) ) |
8 |
|
iineq1 |
⊢ ( 𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) = ∩ 𝑥 ∈ ∅ ( 𝐶 × 𝐵 ) ) |
9 |
|
0iin |
⊢ ∩ 𝑥 ∈ ∅ ( 𝐶 × 𝐵 ) = V |
10 |
8 9
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) = V ) |
11 |
10
|
ineq2d |
⊢ ( 𝐴 = ∅ → ( ( 𝐶 × 𝐷 ) ∩ ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) = ( ( 𝐶 × 𝐷 ) ∩ V ) ) |
12 |
|
inv1 |
⊢ ( ( 𝐶 × 𝐷 ) ∩ V ) = ( 𝐶 × 𝐷 ) |
13 |
11 12
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ( ( 𝐶 × 𝐷 ) ∩ ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) = ( 𝐶 × 𝐷 ) ) |
14 |
7 13
|
eqtr4d |
⊢ ( 𝐴 = ∅ → ( 𝐶 × ( 𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) ) = ( ( 𝐶 × 𝐷 ) ∩ ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) ) |
15 |
|
xpindi |
⊢ ( 𝐶 × ( 𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) ) = ( ( 𝐶 × 𝐷 ) ∩ ( 𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵 ) ) |
16 |
|
xpiindi |
⊢ ( 𝐴 ≠ ∅ → ( 𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵 ) = ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) |
17 |
16
|
ineq2d |
⊢ ( 𝐴 ≠ ∅ → ( ( 𝐶 × 𝐷 ) ∩ ( 𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵 ) ) = ( ( 𝐶 × 𝐷 ) ∩ ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) ) |
18 |
15 17
|
eqtrid |
⊢ ( 𝐴 ≠ ∅ → ( 𝐶 × ( 𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) ) = ( ( 𝐶 × 𝐷 ) ∩ ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) ) |
19 |
14 18
|
pm2.61ine |
⊢ ( 𝐶 × ( 𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) ) = ( ( 𝐶 × 𝐷 ) ∩ ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) |