| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iineq1 |
⊢ ( 𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ ∅ 𝐵 ) |
| 2 |
|
0iin |
⊢ ∩ 𝑥 ∈ ∅ 𝐵 = V |
| 3 |
1 2
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 𝐵 = V ) |
| 4 |
3
|
ineq2d |
⊢ ( 𝐴 = ∅ → ( 𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) = ( 𝐷 ∩ V ) ) |
| 5 |
|
inv1 |
⊢ ( 𝐷 ∩ V ) = 𝐷 |
| 6 |
4 5
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ( 𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) = 𝐷 ) |
| 7 |
6
|
xpeq2d |
⊢ ( 𝐴 = ∅ → ( 𝐶 × ( 𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) ) = ( 𝐶 × 𝐷 ) ) |
| 8 |
|
iineq1 |
⊢ ( 𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) = ∩ 𝑥 ∈ ∅ ( 𝐶 × 𝐵 ) ) |
| 9 |
|
0iin |
⊢ ∩ 𝑥 ∈ ∅ ( 𝐶 × 𝐵 ) = V |
| 10 |
8 9
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) = V ) |
| 11 |
10
|
ineq2d |
⊢ ( 𝐴 = ∅ → ( ( 𝐶 × 𝐷 ) ∩ ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) = ( ( 𝐶 × 𝐷 ) ∩ V ) ) |
| 12 |
|
inv1 |
⊢ ( ( 𝐶 × 𝐷 ) ∩ V ) = ( 𝐶 × 𝐷 ) |
| 13 |
11 12
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ( ( 𝐶 × 𝐷 ) ∩ ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) = ( 𝐶 × 𝐷 ) ) |
| 14 |
7 13
|
eqtr4d |
⊢ ( 𝐴 = ∅ → ( 𝐶 × ( 𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) ) = ( ( 𝐶 × 𝐷 ) ∩ ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) ) |
| 15 |
|
xpindi |
⊢ ( 𝐶 × ( 𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) ) = ( ( 𝐶 × 𝐷 ) ∩ ( 𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵 ) ) |
| 16 |
|
xpiindi |
⊢ ( 𝐴 ≠ ∅ → ( 𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵 ) = ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) |
| 17 |
16
|
ineq2d |
⊢ ( 𝐴 ≠ ∅ → ( ( 𝐶 × 𝐷 ) ∩ ( 𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵 ) ) = ( ( 𝐶 × 𝐷 ) ∩ ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) ) |
| 18 |
15 17
|
eqtrid |
⊢ ( 𝐴 ≠ ∅ → ( 𝐶 × ( 𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) ) = ( ( 𝐶 × 𝐷 ) ∩ ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) ) |
| 19 |
14 18
|
pm2.61ine |
⊢ ( 𝐶 × ( 𝐷 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) ) = ( ( 𝐶 × 𝐷 ) ∩ ∩ 𝑥 ∈ 𝐴 ( 𝐶 × 𝐵 ) ) |