| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elixp2 | ⊢ ( 𝐺  ∈  X 𝑘  ∈  2o if ( 𝑘  =  ∅ ,  𝐴 ,  𝐵 )  ↔  ( 𝐺  ∈  V  ∧  𝐺  Fn  2o  ∧  ∀ 𝑘  ∈  2o ( 𝐺 ‘ 𝑘 )  ∈  if ( 𝑘  =  ∅ ,  𝐴 ,  𝐵 ) ) ) | 
						
							| 2 |  | 3ancoma | ⊢ ( ( 𝐺  ∈  V  ∧  𝐺  Fn  2o  ∧  ∀ 𝑘  ∈  2o ( 𝐺 ‘ 𝑘 )  ∈  if ( 𝑘  =  ∅ ,  𝐴 ,  𝐵 ) )  ↔  ( 𝐺  Fn  2o  ∧  𝐺  ∈  V  ∧  ∀ 𝑘  ∈  2o ( 𝐺 ‘ 𝑘 )  ∈  if ( 𝑘  =  ∅ ,  𝐴 ,  𝐵 ) ) ) | 
						
							| 3 |  | 2onn | ⊢ 2o  ∈  ω | 
						
							| 4 |  | nnfi | ⊢ ( 2o  ∈  ω  →  2o  ∈  Fin ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ 2o  ∈  Fin | 
						
							| 6 |  | fnfi | ⊢ ( ( 𝐺  Fn  2o  ∧  2o  ∈  Fin )  →  𝐺  ∈  Fin ) | 
						
							| 7 | 5 6 | mpan2 | ⊢ ( 𝐺  Fn  2o  →  𝐺  ∈  Fin ) | 
						
							| 8 | 7 | elexd | ⊢ ( 𝐺  Fn  2o  →  𝐺  ∈  V ) | 
						
							| 9 | 8 | biantrurd | ⊢ ( 𝐺  Fn  2o  →  ( ∀ 𝑘  ∈  2o ( 𝐺 ‘ 𝑘 )  ∈  if ( 𝑘  =  ∅ ,  𝐴 ,  𝐵 )  ↔  ( 𝐺  ∈  V  ∧  ∀ 𝑘  ∈  2o ( 𝐺 ‘ 𝑘 )  ∈  if ( 𝑘  =  ∅ ,  𝐴 ,  𝐵 ) ) ) ) | 
						
							| 10 |  | df2o3 | ⊢ 2o  =  { ∅ ,  1o } | 
						
							| 11 | 10 | raleqi | ⊢ ( ∀ 𝑘  ∈  2o ( 𝐺 ‘ 𝑘 )  ∈  if ( 𝑘  =  ∅ ,  𝐴 ,  𝐵 )  ↔  ∀ 𝑘  ∈  { ∅ ,  1o } ( 𝐺 ‘ 𝑘 )  ∈  if ( 𝑘  =  ∅ ,  𝐴 ,  𝐵 ) ) | 
						
							| 12 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 13 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑘  =  ∅  →  ( 𝐺 ‘ 𝑘 )  =  ( 𝐺 ‘ ∅ ) ) | 
						
							| 15 |  | iftrue | ⊢ ( 𝑘  =  ∅  →  if ( 𝑘  =  ∅ ,  𝐴 ,  𝐵 )  =  𝐴 ) | 
						
							| 16 | 14 15 | eleq12d | ⊢ ( 𝑘  =  ∅  →  ( ( 𝐺 ‘ 𝑘 )  ∈  if ( 𝑘  =  ∅ ,  𝐴 ,  𝐵 )  ↔  ( 𝐺 ‘ ∅ )  ∈  𝐴 ) ) | 
						
							| 17 |  | fveq2 | ⊢ ( 𝑘  =  1o  →  ( 𝐺 ‘ 𝑘 )  =  ( 𝐺 ‘ 1o ) ) | 
						
							| 18 |  | 1n0 | ⊢ 1o  ≠  ∅ | 
						
							| 19 |  | neeq1 | ⊢ ( 𝑘  =  1o  →  ( 𝑘  ≠  ∅  ↔  1o  ≠  ∅ ) ) | 
						
							| 20 | 18 19 | mpbiri | ⊢ ( 𝑘  =  1o  →  𝑘  ≠  ∅ ) | 
						
							| 21 |  | ifnefalse | ⊢ ( 𝑘  ≠  ∅  →  if ( 𝑘  =  ∅ ,  𝐴 ,  𝐵 )  =  𝐵 ) | 
						
							| 22 | 20 21 | syl | ⊢ ( 𝑘  =  1o  →  if ( 𝑘  =  ∅ ,  𝐴 ,  𝐵 )  =  𝐵 ) | 
						
							| 23 | 17 22 | eleq12d | ⊢ ( 𝑘  =  1o  →  ( ( 𝐺 ‘ 𝑘 )  ∈  if ( 𝑘  =  ∅ ,  𝐴 ,  𝐵 )  ↔  ( 𝐺 ‘ 1o )  ∈  𝐵 ) ) | 
						
							| 24 | 12 13 16 23 | ralpr | ⊢ ( ∀ 𝑘  ∈  { ∅ ,  1o } ( 𝐺 ‘ 𝑘 )  ∈  if ( 𝑘  =  ∅ ,  𝐴 ,  𝐵 )  ↔  ( ( 𝐺 ‘ ∅ )  ∈  𝐴  ∧  ( 𝐺 ‘ 1o )  ∈  𝐵 ) ) | 
						
							| 25 | 11 24 | bitri | ⊢ ( ∀ 𝑘  ∈  2o ( 𝐺 ‘ 𝑘 )  ∈  if ( 𝑘  =  ∅ ,  𝐴 ,  𝐵 )  ↔  ( ( 𝐺 ‘ ∅ )  ∈  𝐴  ∧  ( 𝐺 ‘ 1o )  ∈  𝐵 ) ) | 
						
							| 26 | 9 25 | bitr3di | ⊢ ( 𝐺  Fn  2o  →  ( ( 𝐺  ∈  V  ∧  ∀ 𝑘  ∈  2o ( 𝐺 ‘ 𝑘 )  ∈  if ( 𝑘  =  ∅ ,  𝐴 ,  𝐵 ) )  ↔  ( ( 𝐺 ‘ ∅ )  ∈  𝐴  ∧  ( 𝐺 ‘ 1o )  ∈  𝐵 ) ) ) | 
						
							| 27 | 26 | pm5.32i | ⊢ ( ( 𝐺  Fn  2o  ∧  ( 𝐺  ∈  V  ∧  ∀ 𝑘  ∈  2o ( 𝐺 ‘ 𝑘 )  ∈  if ( 𝑘  =  ∅ ,  𝐴 ,  𝐵 ) ) )  ↔  ( 𝐺  Fn  2o  ∧  ( ( 𝐺 ‘ ∅ )  ∈  𝐴  ∧  ( 𝐺 ‘ 1o )  ∈  𝐵 ) ) ) | 
						
							| 28 |  | 3anass | ⊢ ( ( 𝐺  Fn  2o  ∧  𝐺  ∈  V  ∧  ∀ 𝑘  ∈  2o ( 𝐺 ‘ 𝑘 )  ∈  if ( 𝑘  =  ∅ ,  𝐴 ,  𝐵 ) )  ↔  ( 𝐺  Fn  2o  ∧  ( 𝐺  ∈  V  ∧  ∀ 𝑘  ∈  2o ( 𝐺 ‘ 𝑘 )  ∈  if ( 𝑘  =  ∅ ,  𝐴 ,  𝐵 ) ) ) ) | 
						
							| 29 |  | 3anass | ⊢ ( ( 𝐺  Fn  2o  ∧  ( 𝐺 ‘ ∅ )  ∈  𝐴  ∧  ( 𝐺 ‘ 1o )  ∈  𝐵 )  ↔  ( 𝐺  Fn  2o  ∧  ( ( 𝐺 ‘ ∅ )  ∈  𝐴  ∧  ( 𝐺 ‘ 1o )  ∈  𝐵 ) ) ) | 
						
							| 30 | 27 28 29 | 3bitr4i | ⊢ ( ( 𝐺  Fn  2o  ∧  𝐺  ∈  V  ∧  ∀ 𝑘  ∈  2o ( 𝐺 ‘ 𝑘 )  ∈  if ( 𝑘  =  ∅ ,  𝐴 ,  𝐵 ) )  ↔  ( 𝐺  Fn  2o  ∧  ( 𝐺 ‘ ∅ )  ∈  𝐴  ∧  ( 𝐺 ‘ 1o )  ∈  𝐵 ) ) | 
						
							| 31 | 2 30 | bitri | ⊢ ( ( 𝐺  ∈  V  ∧  𝐺  Fn  2o  ∧  ∀ 𝑘  ∈  2o ( 𝐺 ‘ 𝑘 )  ∈  if ( 𝑘  =  ∅ ,  𝐴 ,  𝐵 ) )  ↔  ( 𝐺  Fn  2o  ∧  ( 𝐺 ‘ ∅ )  ∈  𝐴  ∧  ( 𝐺 ‘ 1o )  ∈  𝐵 ) ) | 
						
							| 32 | 1 31 | bitri | ⊢ ( 𝐺  ∈  X 𝑘  ∈  2o if ( 𝑘  =  ∅ ,  𝐴 ,  𝐵 )  ↔  ( 𝐺  Fn  2o  ∧  ( 𝐺 ‘ ∅ )  ∈  𝐴  ∧  ( 𝐺 ‘ 1o )  ∈  𝐵 ) ) |