Metamath Proof Explorer


Theorem xpsgrpsub

Description: Value of the subtraction operation in a binary structure product of groups. (Contributed by AV, 24-Mar-2025)

Ref Expression
Hypotheses xpsinv.t 𝑇 = ( 𝑅 ×s 𝑆 )
xpsinv.x 𝑋 = ( Base ‘ 𝑅 )
xpsinv.y 𝑌 = ( Base ‘ 𝑆 )
xpsinv.r ( 𝜑𝑅 ∈ Grp )
xpsinv.s ( 𝜑𝑆 ∈ Grp )
xpsinv.a ( 𝜑𝐴𝑋 )
xpsinv.b ( 𝜑𝐵𝑌 )
xpsgrpsub.c ( 𝜑𝐶𝑋 )
xpsgrpsub.d ( 𝜑𝐷𝑌 )
xpsgrpsub.m · = ( -g𝑅 )
xpsgrpsub.n × = ( -g𝑆 )
xpsgrpsub.o = ( -g𝑇 )
Assertion xpsgrpsub ( 𝜑 → ( ⟨ 𝐴 , 𝐵𝐶 , 𝐷 ⟩ ) = ⟨ ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) ⟩ )

Proof

Step Hyp Ref Expression
1 xpsinv.t 𝑇 = ( 𝑅 ×s 𝑆 )
2 xpsinv.x 𝑋 = ( Base ‘ 𝑅 )
3 xpsinv.y 𝑌 = ( Base ‘ 𝑆 )
4 xpsinv.r ( 𝜑𝑅 ∈ Grp )
5 xpsinv.s ( 𝜑𝑆 ∈ Grp )
6 xpsinv.a ( 𝜑𝐴𝑋 )
7 xpsinv.b ( 𝜑𝐵𝑌 )
8 xpsgrpsub.c ( 𝜑𝐶𝑋 )
9 xpsgrpsub.d ( 𝜑𝐷𝑌 )
10 xpsgrpsub.m · = ( -g𝑅 )
11 xpsgrpsub.n × = ( -g𝑆 )
12 xpsgrpsub.o = ( -g𝑇 )
13 2 10 grpsubcl ( ( 𝑅 ∈ Grp ∧ 𝐴𝑋𝐶𝑋 ) → ( 𝐴 · 𝐶 ) ∈ 𝑋 )
14 4 6 8 13 syl3anc ( 𝜑 → ( 𝐴 · 𝐶 ) ∈ 𝑋 )
15 3 11 grpsubcl ( ( 𝑆 ∈ Grp ∧ 𝐵𝑌𝐷𝑌 ) → ( 𝐵 × 𝐷 ) ∈ 𝑌 )
16 5 7 9 15 syl3anc ( 𝜑 → ( 𝐵 × 𝐷 ) ∈ 𝑌 )
17 eqid ( +g𝑅 ) = ( +g𝑅 )
18 2 17 4 14 8 grpcld ( 𝜑 → ( ( 𝐴 · 𝐶 ) ( +g𝑅 ) 𝐶 ) ∈ 𝑋 )
19 eqid ( +g𝑆 ) = ( +g𝑆 )
20 3 19 5 16 9 grpcld ( 𝜑 → ( ( 𝐵 × 𝐷 ) ( +g𝑆 ) 𝐷 ) ∈ 𝑌 )
21 eqid ( +g𝑇 ) = ( +g𝑇 )
22 1 2 3 4 5 14 16 8 9 18 20 17 19 21 xpsadd ( 𝜑 → ( ⟨ ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) ⟩ ( +g𝑇 ) ⟨ 𝐶 , 𝐷 ⟩ ) = ⟨ ( ( 𝐴 · 𝐶 ) ( +g𝑅 ) 𝐶 ) , ( ( 𝐵 × 𝐷 ) ( +g𝑆 ) 𝐷 ) ⟩ )
23 2 17 10 grpnpcan ( ( 𝑅 ∈ Grp ∧ 𝐴𝑋𝐶𝑋 ) → ( ( 𝐴 · 𝐶 ) ( +g𝑅 ) 𝐶 ) = 𝐴 )
24 4 6 8 23 syl3anc ( 𝜑 → ( ( 𝐴 · 𝐶 ) ( +g𝑅 ) 𝐶 ) = 𝐴 )
25 3 19 11 grpnpcan ( ( 𝑆 ∈ Grp ∧ 𝐵𝑌𝐷𝑌 ) → ( ( 𝐵 × 𝐷 ) ( +g𝑆 ) 𝐷 ) = 𝐵 )
26 5 7 9 25 syl3anc ( 𝜑 → ( ( 𝐵 × 𝐷 ) ( +g𝑆 ) 𝐷 ) = 𝐵 )
27 24 26 opeq12d ( 𝜑 → ⟨ ( ( 𝐴 · 𝐶 ) ( +g𝑅 ) 𝐶 ) , ( ( 𝐵 × 𝐷 ) ( +g𝑆 ) 𝐷 ) ⟩ = ⟨ 𝐴 , 𝐵 ⟩ )
28 22 27 eqtrd ( 𝜑 → ( ⟨ ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) ⟩ ( +g𝑇 ) ⟨ 𝐶 , 𝐷 ⟩ ) = ⟨ 𝐴 , 𝐵 ⟩ )
29 1 xpsgrp ( ( 𝑅 ∈ Grp ∧ 𝑆 ∈ Grp ) → 𝑇 ∈ Grp )
30 4 5 29 syl2anc ( 𝜑𝑇 ∈ Grp )
31 6 7 opelxpd ( 𝜑 → ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑋 × 𝑌 ) )
32 1 2 3 4 5 xpsbas ( 𝜑 → ( 𝑋 × 𝑌 ) = ( Base ‘ 𝑇 ) )
33 31 32 eleqtrd ( 𝜑 → ⟨ 𝐴 , 𝐵 ⟩ ∈ ( Base ‘ 𝑇 ) )
34 8 9 opelxpd ( 𝜑 → ⟨ 𝐶 , 𝐷 ⟩ ∈ ( 𝑋 × 𝑌 ) )
35 34 32 eleqtrd ( 𝜑 → ⟨ 𝐶 , 𝐷 ⟩ ∈ ( Base ‘ 𝑇 ) )
36 14 16 opelxpd ( 𝜑 → ⟨ ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) ⟩ ∈ ( 𝑋 × 𝑌 ) )
37 36 32 eleqtrd ( 𝜑 → ⟨ ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) ⟩ ∈ ( Base ‘ 𝑇 ) )
38 eqid ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 )
39 38 21 12 grpsubadd ( ( 𝑇 ∈ Grp ∧ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( Base ‘ 𝑇 ) ∧ ⟨ 𝐶 , 𝐷 ⟩ ∈ ( Base ‘ 𝑇 ) ∧ ⟨ ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) ⟩ ∈ ( Base ‘ 𝑇 ) ) ) → ( ( ⟨ 𝐴 , 𝐵𝐶 , 𝐷 ⟩ ) = ⟨ ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) ⟩ ↔ ( ⟨ ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) ⟩ ( +g𝑇 ) ⟨ 𝐶 , 𝐷 ⟩ ) = ⟨ 𝐴 , 𝐵 ⟩ ) )
40 30 33 35 37 39 syl13anc ( 𝜑 → ( ( ⟨ 𝐴 , 𝐵𝐶 , 𝐷 ⟩ ) = ⟨ ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) ⟩ ↔ ( ⟨ ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) ⟩ ( +g𝑇 ) ⟨ 𝐶 , 𝐷 ⟩ ) = ⟨ 𝐴 , 𝐵 ⟩ ) )
41 28 40 mpbird ( 𝜑 → ( ⟨ 𝐴 , 𝐵𝐶 , 𝐷 ⟩ ) = ⟨ ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) ⟩ )