Step |
Hyp |
Ref |
Expression |
1 |
|
xpsinv.t |
⊢ 𝑇 = ( 𝑅 ×s 𝑆 ) |
2 |
|
xpsinv.x |
⊢ 𝑋 = ( Base ‘ 𝑅 ) |
3 |
|
xpsinv.y |
⊢ 𝑌 = ( Base ‘ 𝑆 ) |
4 |
|
xpsinv.r |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
5 |
|
xpsinv.s |
⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
6 |
|
xpsinv.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
7 |
|
xpsinv.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) |
8 |
|
xpsgrpsub.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) |
9 |
|
xpsgrpsub.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑌 ) |
10 |
|
xpsgrpsub.m |
⊢ · = ( -g ‘ 𝑅 ) |
11 |
|
xpsgrpsub.n |
⊢ × = ( -g ‘ 𝑆 ) |
12 |
|
xpsgrpsub.o |
⊢ − = ( -g ‘ 𝑇 ) |
13 |
2 10
|
grpsubcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 · 𝐶 ) ∈ 𝑋 ) |
14 |
4 6 8 13
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 · 𝐶 ) ∈ 𝑋 ) |
15 |
3 11
|
grpsubcl |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝐵 ∈ 𝑌 ∧ 𝐷 ∈ 𝑌 ) → ( 𝐵 × 𝐷 ) ∈ 𝑌 ) |
16 |
5 7 9 15
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 × 𝐷 ) ∈ 𝑌 ) |
17 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
18 |
2 17 4 14 8
|
grpcld |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐶 ) ( +g ‘ 𝑅 ) 𝐶 ) ∈ 𝑋 ) |
19 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
20 |
3 19 5 16 9
|
grpcld |
⊢ ( 𝜑 → ( ( 𝐵 × 𝐷 ) ( +g ‘ 𝑆 ) 𝐷 ) ∈ 𝑌 ) |
21 |
|
eqid |
⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) |
22 |
1 2 3 4 5 14 16 8 9 18 20 17 19 21
|
xpsadd |
⊢ ( 𝜑 → ( 〈 ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) 〉 ( +g ‘ 𝑇 ) 〈 𝐶 , 𝐷 〉 ) = 〈 ( ( 𝐴 · 𝐶 ) ( +g ‘ 𝑅 ) 𝐶 ) , ( ( 𝐵 × 𝐷 ) ( +g ‘ 𝑆 ) 𝐷 ) 〉 ) |
23 |
2 17 10
|
grpnpcan |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 · 𝐶 ) ( +g ‘ 𝑅 ) 𝐶 ) = 𝐴 ) |
24 |
4 6 8 23
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐶 ) ( +g ‘ 𝑅 ) 𝐶 ) = 𝐴 ) |
25 |
3 19 11
|
grpnpcan |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝐵 ∈ 𝑌 ∧ 𝐷 ∈ 𝑌 ) → ( ( 𝐵 × 𝐷 ) ( +g ‘ 𝑆 ) 𝐷 ) = 𝐵 ) |
26 |
5 7 9 25
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐵 × 𝐷 ) ( +g ‘ 𝑆 ) 𝐷 ) = 𝐵 ) |
27 |
24 26
|
opeq12d |
⊢ ( 𝜑 → 〈 ( ( 𝐴 · 𝐶 ) ( +g ‘ 𝑅 ) 𝐶 ) , ( ( 𝐵 × 𝐷 ) ( +g ‘ 𝑆 ) 𝐷 ) 〉 = 〈 𝐴 , 𝐵 〉 ) |
28 |
22 27
|
eqtrd |
⊢ ( 𝜑 → ( 〈 ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) 〉 ( +g ‘ 𝑇 ) 〈 𝐶 , 𝐷 〉 ) = 〈 𝐴 , 𝐵 〉 ) |
29 |
1
|
xpsgrp |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑆 ∈ Grp ) → 𝑇 ∈ Grp ) |
30 |
4 5 29
|
syl2anc |
⊢ ( 𝜑 → 𝑇 ∈ Grp ) |
31 |
6 7
|
opelxpd |
⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑌 ) ) |
32 |
1 2 3 4 5
|
xpsbas |
⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) = ( Base ‘ 𝑇 ) ) |
33 |
31 32
|
eleqtrd |
⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ∈ ( Base ‘ 𝑇 ) ) |
34 |
8 9
|
opelxpd |
⊢ ( 𝜑 → 〈 𝐶 , 𝐷 〉 ∈ ( 𝑋 × 𝑌 ) ) |
35 |
34 32
|
eleqtrd |
⊢ ( 𝜑 → 〈 𝐶 , 𝐷 〉 ∈ ( Base ‘ 𝑇 ) ) |
36 |
14 16
|
opelxpd |
⊢ ( 𝜑 → 〈 ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) 〉 ∈ ( 𝑋 × 𝑌 ) ) |
37 |
36 32
|
eleqtrd |
⊢ ( 𝜑 → 〈 ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) 〉 ∈ ( Base ‘ 𝑇 ) ) |
38 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
39 |
38 21 12
|
grpsubadd |
⊢ ( ( 𝑇 ∈ Grp ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( Base ‘ 𝑇 ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( Base ‘ 𝑇 ) ∧ 〈 ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) 〉 ∈ ( Base ‘ 𝑇 ) ) ) → ( ( 〈 𝐴 , 𝐵 〉 − 〈 𝐶 , 𝐷 〉 ) = 〈 ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) 〉 ↔ ( 〈 ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) 〉 ( +g ‘ 𝑇 ) 〈 𝐶 , 𝐷 〉 ) = 〈 𝐴 , 𝐵 〉 ) ) |
40 |
30 33 35 37 39
|
syl13anc |
⊢ ( 𝜑 → ( ( 〈 𝐴 , 𝐵 〉 − 〈 𝐶 , 𝐷 〉 ) = 〈 ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) 〉 ↔ ( 〈 ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) 〉 ( +g ‘ 𝑇 ) 〈 𝐶 , 𝐷 〉 ) = 〈 𝐴 , 𝐵 〉 ) ) |
41 |
28 40
|
mpbird |
⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 − 〈 𝐶 , 𝐷 〉 ) = 〈 ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) 〉 ) |