Step |
Hyp |
Ref |
Expression |
1 |
|
xpsinv.t |
⊢ 𝑇 = ( 𝑅 ×s 𝑆 ) |
2 |
|
xpsinv.x |
⊢ 𝑋 = ( Base ‘ 𝑅 ) |
3 |
|
xpsinv.y |
⊢ 𝑌 = ( Base ‘ 𝑆 ) |
4 |
|
xpsinv.r |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
5 |
|
xpsinv.s |
⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
6 |
|
xpsinv.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
7 |
|
xpsinv.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) |
8 |
|
xpsinv.m |
⊢ 𝑀 = ( invg ‘ 𝑅 ) |
9 |
|
xpsinv.n |
⊢ 𝑁 = ( invg ‘ 𝑆 ) |
10 |
|
xpsinv.i |
⊢ 𝐼 = ( invg ‘ 𝑇 ) |
11 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
12 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
13 |
2 11 12 8 4 6
|
grplinvd |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐴 ) ( +g ‘ 𝑅 ) 𝐴 ) = ( 0g ‘ 𝑅 ) ) |
14 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
15 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
16 |
3 14 15 9 5 7
|
grplinvd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐵 ) ( +g ‘ 𝑆 ) 𝐵 ) = ( 0g ‘ 𝑆 ) ) |
17 |
13 16
|
opeq12d |
⊢ ( 𝜑 → 〈 ( ( 𝑀 ‘ 𝐴 ) ( +g ‘ 𝑅 ) 𝐴 ) , ( ( 𝑁 ‘ 𝐵 ) ( +g ‘ 𝑆 ) 𝐵 ) 〉 = 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ) |
18 |
2 8 4 6
|
grpinvcld |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ 𝑋 ) |
19 |
3 9 5 7
|
grpinvcld |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝐵 ) ∈ 𝑌 ) |
20 |
2 11 4 18 6
|
grpcld |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐴 ) ( +g ‘ 𝑅 ) 𝐴 ) ∈ 𝑋 ) |
21 |
3 14 5 19 7
|
grpcld |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐵 ) ( +g ‘ 𝑆 ) 𝐵 ) ∈ 𝑌 ) |
22 |
|
eqid |
⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) |
23 |
1 2 3 4 5 18 19 6 7 20 21 11 14 22
|
xpsadd |
⊢ ( 𝜑 → ( 〈 ( 𝑀 ‘ 𝐴 ) , ( 𝑁 ‘ 𝐵 ) 〉 ( +g ‘ 𝑇 ) 〈 𝐴 , 𝐵 〉 ) = 〈 ( ( 𝑀 ‘ 𝐴 ) ( +g ‘ 𝑅 ) 𝐴 ) , ( ( 𝑁 ‘ 𝐵 ) ( +g ‘ 𝑆 ) 𝐵 ) 〉 ) |
24 |
4
|
grpmndd |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
25 |
5
|
grpmndd |
⊢ ( 𝜑 → 𝑆 ∈ Mnd ) |
26 |
1
|
xpsmnd0 |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( 0g ‘ 𝑇 ) = 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ) |
27 |
24 25 26
|
syl2anc |
⊢ ( 𝜑 → ( 0g ‘ 𝑇 ) = 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ) |
28 |
17 23 27
|
3eqtr4d |
⊢ ( 𝜑 → ( 〈 ( 𝑀 ‘ 𝐴 ) , ( 𝑁 ‘ 𝐵 ) 〉 ( +g ‘ 𝑇 ) 〈 𝐴 , 𝐵 〉 ) = ( 0g ‘ 𝑇 ) ) |
29 |
1
|
xpsgrp |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑆 ∈ Grp ) → 𝑇 ∈ Grp ) |
30 |
4 5 29
|
syl2anc |
⊢ ( 𝜑 → 𝑇 ∈ Grp ) |
31 |
6 7
|
opelxpd |
⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑌 ) ) |
32 |
1 2 3 4 5
|
xpsbas |
⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) = ( Base ‘ 𝑇 ) ) |
33 |
31 32
|
eleqtrd |
⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ∈ ( Base ‘ 𝑇 ) ) |
34 |
18 19
|
opelxpd |
⊢ ( 𝜑 → 〈 ( 𝑀 ‘ 𝐴 ) , ( 𝑁 ‘ 𝐵 ) 〉 ∈ ( 𝑋 × 𝑌 ) ) |
35 |
34 32
|
eleqtrd |
⊢ ( 𝜑 → 〈 ( 𝑀 ‘ 𝐴 ) , ( 𝑁 ‘ 𝐵 ) 〉 ∈ ( Base ‘ 𝑇 ) ) |
36 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
37 |
|
eqid |
⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) |
38 |
36 22 37 10
|
grpinvid2 |
⊢ ( ( 𝑇 ∈ Grp ∧ 〈 𝐴 , 𝐵 〉 ∈ ( Base ‘ 𝑇 ) ∧ 〈 ( 𝑀 ‘ 𝐴 ) , ( 𝑁 ‘ 𝐵 ) 〉 ∈ ( Base ‘ 𝑇 ) ) → ( ( 𝐼 ‘ 〈 𝐴 , 𝐵 〉 ) = 〈 ( 𝑀 ‘ 𝐴 ) , ( 𝑁 ‘ 𝐵 ) 〉 ↔ ( 〈 ( 𝑀 ‘ 𝐴 ) , ( 𝑁 ‘ 𝐵 ) 〉 ( +g ‘ 𝑇 ) 〈 𝐴 , 𝐵 〉 ) = ( 0g ‘ 𝑇 ) ) ) |
39 |
30 33 35 38
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 〈 𝐴 , 𝐵 〉 ) = 〈 ( 𝑀 ‘ 𝐴 ) , ( 𝑁 ‘ 𝐵 ) 〉 ↔ ( 〈 ( 𝑀 ‘ 𝐴 ) , ( 𝑁 ‘ 𝐵 ) 〉 ( +g ‘ 𝑇 ) 〈 𝐴 , 𝐵 〉 ) = ( 0g ‘ 𝑇 ) ) ) |
40 |
28 39
|
mpbird |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝐴 , 𝐵 〉 ) = 〈 ( 𝑀 ‘ 𝐴 ) , ( 𝑁 ‘ 𝐵 ) 〉 ) |