Metamath Proof Explorer


Theorem xpsinv

Description: Value of the negation operation in a binary structure product. (Contributed by AV, 18-Mar-2025)

Ref Expression
Hypotheses xpsinv.t 𝑇 = ( 𝑅 ×s 𝑆 )
xpsinv.x 𝑋 = ( Base ‘ 𝑅 )
xpsinv.y 𝑌 = ( Base ‘ 𝑆 )
xpsinv.r ( 𝜑𝑅 ∈ Grp )
xpsinv.s ( 𝜑𝑆 ∈ Grp )
xpsinv.a ( 𝜑𝐴𝑋 )
xpsinv.b ( 𝜑𝐵𝑌 )
xpsinv.m 𝑀 = ( invg𝑅 )
xpsinv.n 𝑁 = ( invg𝑆 )
xpsinv.i 𝐼 = ( invg𝑇 )
Assertion xpsinv ( 𝜑 → ( 𝐼 ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = ⟨ ( 𝑀𝐴 ) , ( 𝑁𝐵 ) ⟩ )

Proof

Step Hyp Ref Expression
1 xpsinv.t 𝑇 = ( 𝑅 ×s 𝑆 )
2 xpsinv.x 𝑋 = ( Base ‘ 𝑅 )
3 xpsinv.y 𝑌 = ( Base ‘ 𝑆 )
4 xpsinv.r ( 𝜑𝑅 ∈ Grp )
5 xpsinv.s ( 𝜑𝑆 ∈ Grp )
6 xpsinv.a ( 𝜑𝐴𝑋 )
7 xpsinv.b ( 𝜑𝐵𝑌 )
8 xpsinv.m 𝑀 = ( invg𝑅 )
9 xpsinv.n 𝑁 = ( invg𝑆 )
10 xpsinv.i 𝐼 = ( invg𝑇 )
11 eqid ( +g𝑅 ) = ( +g𝑅 )
12 eqid ( 0g𝑅 ) = ( 0g𝑅 )
13 2 11 12 8 4 6 grplinvd ( 𝜑 → ( ( 𝑀𝐴 ) ( +g𝑅 ) 𝐴 ) = ( 0g𝑅 ) )
14 eqid ( +g𝑆 ) = ( +g𝑆 )
15 eqid ( 0g𝑆 ) = ( 0g𝑆 )
16 3 14 15 9 5 7 grplinvd ( 𝜑 → ( ( 𝑁𝐵 ) ( +g𝑆 ) 𝐵 ) = ( 0g𝑆 ) )
17 13 16 opeq12d ( 𝜑 → ⟨ ( ( 𝑀𝐴 ) ( +g𝑅 ) 𝐴 ) , ( ( 𝑁𝐵 ) ( +g𝑆 ) 𝐵 ) ⟩ = ⟨ ( 0g𝑅 ) , ( 0g𝑆 ) ⟩ )
18 2 8 4 6 grpinvcld ( 𝜑 → ( 𝑀𝐴 ) ∈ 𝑋 )
19 3 9 5 7 grpinvcld ( 𝜑 → ( 𝑁𝐵 ) ∈ 𝑌 )
20 2 11 4 18 6 grpcld ( 𝜑 → ( ( 𝑀𝐴 ) ( +g𝑅 ) 𝐴 ) ∈ 𝑋 )
21 3 14 5 19 7 grpcld ( 𝜑 → ( ( 𝑁𝐵 ) ( +g𝑆 ) 𝐵 ) ∈ 𝑌 )
22 eqid ( +g𝑇 ) = ( +g𝑇 )
23 1 2 3 4 5 18 19 6 7 20 21 11 14 22 xpsadd ( 𝜑 → ( ⟨ ( 𝑀𝐴 ) , ( 𝑁𝐵 ) ⟩ ( +g𝑇 ) ⟨ 𝐴 , 𝐵 ⟩ ) = ⟨ ( ( 𝑀𝐴 ) ( +g𝑅 ) 𝐴 ) , ( ( 𝑁𝐵 ) ( +g𝑆 ) 𝐵 ) ⟩ )
24 4 grpmndd ( 𝜑𝑅 ∈ Mnd )
25 5 grpmndd ( 𝜑𝑆 ∈ Mnd )
26 1 xpsmnd0 ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( 0g𝑇 ) = ⟨ ( 0g𝑅 ) , ( 0g𝑆 ) ⟩ )
27 24 25 26 syl2anc ( 𝜑 → ( 0g𝑇 ) = ⟨ ( 0g𝑅 ) , ( 0g𝑆 ) ⟩ )
28 17 23 27 3eqtr4d ( 𝜑 → ( ⟨ ( 𝑀𝐴 ) , ( 𝑁𝐵 ) ⟩ ( +g𝑇 ) ⟨ 𝐴 , 𝐵 ⟩ ) = ( 0g𝑇 ) )
29 1 xpsgrp ( ( 𝑅 ∈ Grp ∧ 𝑆 ∈ Grp ) → 𝑇 ∈ Grp )
30 4 5 29 syl2anc ( 𝜑𝑇 ∈ Grp )
31 6 7 opelxpd ( 𝜑 → ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝑋 × 𝑌 ) )
32 1 2 3 4 5 xpsbas ( 𝜑 → ( 𝑋 × 𝑌 ) = ( Base ‘ 𝑇 ) )
33 31 32 eleqtrd ( 𝜑 → ⟨ 𝐴 , 𝐵 ⟩ ∈ ( Base ‘ 𝑇 ) )
34 18 19 opelxpd ( 𝜑 → ⟨ ( 𝑀𝐴 ) , ( 𝑁𝐵 ) ⟩ ∈ ( 𝑋 × 𝑌 ) )
35 34 32 eleqtrd ( 𝜑 → ⟨ ( 𝑀𝐴 ) , ( 𝑁𝐵 ) ⟩ ∈ ( Base ‘ 𝑇 ) )
36 eqid ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 )
37 eqid ( 0g𝑇 ) = ( 0g𝑇 )
38 36 22 37 10 grpinvid2 ( ( 𝑇 ∈ Grp ∧ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( Base ‘ 𝑇 ) ∧ ⟨ ( 𝑀𝐴 ) , ( 𝑁𝐵 ) ⟩ ∈ ( Base ‘ 𝑇 ) ) → ( ( 𝐼 ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = ⟨ ( 𝑀𝐴 ) , ( 𝑁𝐵 ) ⟩ ↔ ( ⟨ ( 𝑀𝐴 ) , ( 𝑁𝐵 ) ⟩ ( +g𝑇 ) ⟨ 𝐴 , 𝐵 ⟩ ) = ( 0g𝑇 ) ) )
39 30 33 35 38 syl3anc ( 𝜑 → ( ( 𝐼 ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = ⟨ ( 𝑀𝐴 ) , ( 𝑁𝐵 ) ⟩ ↔ ( ⟨ ( 𝑀𝐴 ) , ( 𝑁𝐵 ) ⟩ ( +g𝑇 ) ⟨ 𝐴 , 𝐵 ⟩ ) = ( 0g𝑇 ) ) )
40 28 39 mpbird ( 𝜑 → ( 𝐼 ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = ⟨ ( 𝑀𝐴 ) , ( 𝑁𝐵 ) ⟩ )