Metamath Proof Explorer


Theorem xpsmnd

Description: The binary product of monoids is a monoid. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Hypothesis xpsmnd.t 𝑇 = ( 𝑅 ×s 𝑆 )
Assertion xpsmnd ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → 𝑇 ∈ Mnd )

Proof

Step Hyp Ref Expression
1 xpsmnd.t 𝑇 = ( 𝑅 ×s 𝑆 )
2 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
3 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
4 simpl ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → 𝑅 ∈ Mnd )
5 simpr ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → 𝑆 ∈ Mnd )
6 eqid ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } )
7 eqid ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 )
8 eqid ( ( Scalar ‘ 𝑅 ) Xs { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) = ( ( Scalar ‘ 𝑅 ) Xs { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } )
9 1 2 3 4 5 6 7 8 xpsval ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → 𝑇 = ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) “s ( ( Scalar ‘ 𝑅 ) Xs { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) )
10 6 xpsff1o2 ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) : ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) –1-1-onto→ ran ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } )
11 1 2 3 4 5 6 7 8 xpsrnbas ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ran ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) )
12 11 f1oeq3d ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) : ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) –1-1-onto→ ran ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) : ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) –1-1-onto→ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) ) )
13 10 12 mpbii ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) : ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) –1-1-onto→ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) )
14 f1ocnv ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) : ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) –1-1-onto→ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) : ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) –1-1-onto→ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) )
15 f1of1 ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) : ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) –1-1-onto→ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) : ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) –1-1→ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) )
16 13 14 15 3syl ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) : ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) –1-1→ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) )
17 2on 2o ∈ On
18 17 a1i ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → 2o ∈ On )
19 fvexd ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( Scalar ‘ 𝑅 ) ∈ V )
20 xpscf ( { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } : 2o ⟶ Mnd ↔ ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) )
21 20 biimpri ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } : 2o ⟶ Mnd )
22 8 18 19 21 prdsmndd ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( ( Scalar ‘ 𝑅 ) Xs { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ∈ Mnd )
23 eqid ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) “s ( ( Scalar ‘ 𝑅 ) Xs { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) = ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) “s ( ( Scalar ‘ 𝑅 ) Xs { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) )
24 eqid ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) )
25 23 24 imasmndf1 ( ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) : ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) –1-1→ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) ∧ ( ( Scalar ‘ 𝑅 ) Xs { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ∈ Mnd ) → ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) “s ( ( Scalar ‘ 𝑅 ) Xs { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) ∈ Mnd )
26 16 22 25 syl2anc ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) “s ( ( Scalar ‘ 𝑅 ) Xs { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) ∈ Mnd )
27 9 26 eqeltrd ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → 𝑇 ∈ Mnd )