| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xpsmnd0.t | ⊢ 𝑇  =  ( 𝑅  ×s  𝑆 ) | 
						
							| 2 |  | eqid | ⊢ ( Base ‘ 𝑇 )  =  ( Base ‘ 𝑇 ) | 
						
							| 3 |  | eqid | ⊢ ( 0g ‘ 𝑇 )  =  ( 0g ‘ 𝑇 ) | 
						
							| 4 |  | eqid | ⊢ ( +g ‘ 𝑇 )  =  ( +g ‘ 𝑇 ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 6 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 7 | 5 6 | mndidcl | ⊢ ( 𝑅  ∈  Mnd  →  ( 0g ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  →  ( 0g ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 10 |  | eqid | ⊢ ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑆 ) | 
						
							| 11 | 9 10 | mndidcl | ⊢ ( 𝑆  ∈  Mnd  →  ( 0g ‘ 𝑆 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  →  ( 0g ‘ 𝑆 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 13 | 8 12 | opelxpd | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  →  〈 ( 0g ‘ 𝑅 ) ,  ( 0g ‘ 𝑆 ) 〉  ∈  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑆 ) ) ) | 
						
							| 14 |  | simpl | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  →  𝑅  ∈  Mnd ) | 
						
							| 15 |  | simpr | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  →  𝑆  ∈  Mnd ) | 
						
							| 16 | 1 5 9 14 15 | xpsbas | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  →  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑆 ) )  =  ( Base ‘ 𝑇 ) ) | 
						
							| 17 | 13 16 | eleqtrd | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  →  〈 ( 0g ‘ 𝑅 ) ,  ( 0g ‘ 𝑆 ) 〉  ∈  ( Base ‘ 𝑇 ) ) | 
						
							| 18 | 16 | eleq2d | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  →  ( 𝑥  ∈  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑆 ) )  ↔  𝑥  ∈  ( Base ‘ 𝑇 ) ) ) | 
						
							| 19 |  | elxp2 | ⊢ ( 𝑥  ∈  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑆 ) )  ↔  ∃ 𝑎  ∈  ( Base ‘ 𝑅 ) ∃ 𝑏  ∈  ( Base ‘ 𝑆 ) 𝑥  =  〈 𝑎 ,  𝑏 〉 ) | 
						
							| 20 | 14 | adantr | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  ∧  ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 ) ) )  →  𝑅  ∈  Mnd ) | 
						
							| 21 | 15 | adantr | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  ∧  ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 ) ) )  →  𝑆  ∈  Mnd ) | 
						
							| 22 | 8 | adantr | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  ∧  ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 0g ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 23 | 12 | adantr | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  ∧  ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 0g ‘ 𝑆 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 24 |  | simpl | ⊢ ( ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 ) )  →  𝑎  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  ∧  ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 ) ) )  →  𝑎  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 26 |  | simpr | ⊢ ( ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 ) )  →  𝑏  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  ∧  ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 ) ) )  →  𝑏  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 28 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 29 | 5 28 | mndcl | ⊢ ( ( 𝑅  ∈  Mnd  ∧  ( 0g ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 )  ∧  𝑎  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑎 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 30 | 20 22 25 29 | syl3anc | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  ∧  ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 ) ) )  →  ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑎 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 31 |  | eqid | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) | 
						
							| 32 | 9 31 | mndcl | ⊢ ( ( 𝑆  ∈  Mnd  ∧  ( 0g ‘ 𝑆 )  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 ) )  →  ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑏 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 33 | 21 23 27 32 | syl3anc | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  ∧  ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 ) ) )  →  ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑏 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 34 | 1 5 9 20 21 22 23 25 27 30 33 28 31 4 | xpsadd | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  ∧  ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 〈 ( 0g ‘ 𝑅 ) ,  ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 〈 𝑎 ,  𝑏 〉 )  =  〈 ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑎 ) ,  ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑏 ) 〉 ) | 
						
							| 35 | 5 28 6 | mndlid | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑎  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑎 )  =  𝑎 ) | 
						
							| 36 | 14 24 35 | syl2an | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  ∧  ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 ) ) )  →  ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑎 )  =  𝑎 ) | 
						
							| 37 | 9 31 10 | mndlid | ⊢ ( ( 𝑆  ∈  Mnd  ∧  𝑏  ∈  ( Base ‘ 𝑆 ) )  →  ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑏 )  =  𝑏 ) | 
						
							| 38 | 15 26 37 | syl2an | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  ∧  ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 ) ) )  →  ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑏 )  =  𝑏 ) | 
						
							| 39 | 36 38 | opeq12d | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  ∧  ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 ) ) )  →  〈 ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑎 ) ,  ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑏 ) 〉  =  〈 𝑎 ,  𝑏 〉 ) | 
						
							| 40 | 34 39 | eqtrd | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  ∧  ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 〈 ( 0g ‘ 𝑅 ) ,  ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 〈 𝑎 ,  𝑏 〉 )  =  〈 𝑎 ,  𝑏 〉 ) | 
						
							| 41 |  | oveq2 | ⊢ ( 𝑥  =  〈 𝑎 ,  𝑏 〉  →  ( 〈 ( 0g ‘ 𝑅 ) ,  ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 𝑥 )  =  ( 〈 ( 0g ‘ 𝑅 ) ,  ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 〈 𝑎 ,  𝑏 〉 ) ) | 
						
							| 42 |  | id | ⊢ ( 𝑥  =  〈 𝑎 ,  𝑏 〉  →  𝑥  =  〈 𝑎 ,  𝑏 〉 ) | 
						
							| 43 | 41 42 | eqeq12d | ⊢ ( 𝑥  =  〈 𝑎 ,  𝑏 〉  →  ( ( 〈 ( 0g ‘ 𝑅 ) ,  ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 𝑥 )  =  𝑥  ↔  ( 〈 ( 0g ‘ 𝑅 ) ,  ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 〈 𝑎 ,  𝑏 〉 )  =  〈 𝑎 ,  𝑏 〉 ) ) | 
						
							| 44 | 40 43 | syl5ibrcom | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  ∧  ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 𝑥  =  〈 𝑎 ,  𝑏 〉  →  ( 〈 ( 0g ‘ 𝑅 ) ,  ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 𝑥 )  =  𝑥 ) ) | 
						
							| 45 | 44 | rexlimdvva | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  →  ( ∃ 𝑎  ∈  ( Base ‘ 𝑅 ) ∃ 𝑏  ∈  ( Base ‘ 𝑆 ) 𝑥  =  〈 𝑎 ,  𝑏 〉  →  ( 〈 ( 0g ‘ 𝑅 ) ,  ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 𝑥 )  =  𝑥 ) ) | 
						
							| 46 | 19 45 | biimtrid | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  →  ( 𝑥  ∈  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑆 ) )  →  ( 〈 ( 0g ‘ 𝑅 ) ,  ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 𝑥 )  =  𝑥 ) ) | 
						
							| 47 | 18 46 | sylbird | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  →  ( 𝑥  ∈  ( Base ‘ 𝑇 )  →  ( 〈 ( 0g ‘ 𝑅 ) ,  ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 𝑥 )  =  𝑥 ) ) | 
						
							| 48 | 47 | imp | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  ∧  𝑥  ∈  ( Base ‘ 𝑇 ) )  →  ( 〈 ( 0g ‘ 𝑅 ) ,  ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 𝑥 )  =  𝑥 ) | 
						
							| 49 | 5 28 | mndcl | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑎  ∈  ( Base ‘ 𝑅 )  ∧  ( 0g ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑎 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 50 | 20 25 22 49 | syl3anc | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  ∧  ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 𝑎 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 51 | 9 31 | mndcl | ⊢ ( ( 𝑆  ∈  Mnd  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  ( 0g ‘ 𝑆 )  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝑏 ( +g ‘ 𝑆 ) ( 0g ‘ 𝑆 ) )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 52 | 21 27 23 51 | syl3anc | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  ∧  ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 𝑏 ( +g ‘ 𝑆 ) ( 0g ‘ 𝑆 ) )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 53 | 1 5 9 20 21 25 27 22 23 50 52 28 31 4 | xpsadd | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  ∧  ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 〈 𝑎 ,  𝑏 〉 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) ,  ( 0g ‘ 𝑆 ) 〉 )  =  〈 ( 𝑎 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ,  ( 𝑏 ( +g ‘ 𝑆 ) ( 0g ‘ 𝑆 ) ) 〉 ) | 
						
							| 54 | 5 28 6 | mndrid | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑎  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑎 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) )  =  𝑎 ) | 
						
							| 55 | 14 24 54 | syl2an | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  ∧  ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 𝑎 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) )  =  𝑎 ) | 
						
							| 56 | 9 31 10 | mndrid | ⊢ ( ( 𝑆  ∈  Mnd  ∧  𝑏  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝑏 ( +g ‘ 𝑆 ) ( 0g ‘ 𝑆 ) )  =  𝑏 ) | 
						
							| 57 | 15 26 56 | syl2an | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  ∧  ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 𝑏 ( +g ‘ 𝑆 ) ( 0g ‘ 𝑆 ) )  =  𝑏 ) | 
						
							| 58 | 55 57 | opeq12d | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  ∧  ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 ) ) )  →  〈 ( 𝑎 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ,  ( 𝑏 ( +g ‘ 𝑆 ) ( 0g ‘ 𝑆 ) ) 〉  =  〈 𝑎 ,  𝑏 〉 ) | 
						
							| 59 | 53 58 | eqtrd | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  ∧  ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 〈 𝑎 ,  𝑏 〉 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) ,  ( 0g ‘ 𝑆 ) 〉 )  =  〈 𝑎 ,  𝑏 〉 ) | 
						
							| 60 |  | oveq1 | ⊢ ( 𝑥  =  〈 𝑎 ,  𝑏 〉  →  ( 𝑥 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) ,  ( 0g ‘ 𝑆 ) 〉 )  =  ( 〈 𝑎 ,  𝑏 〉 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) ,  ( 0g ‘ 𝑆 ) 〉 ) ) | 
						
							| 61 | 60 42 | eqeq12d | ⊢ ( 𝑥  =  〈 𝑎 ,  𝑏 〉  →  ( ( 𝑥 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) ,  ( 0g ‘ 𝑆 ) 〉 )  =  𝑥  ↔  ( 〈 𝑎 ,  𝑏 〉 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) ,  ( 0g ‘ 𝑆 ) 〉 )  =  〈 𝑎 ,  𝑏 〉 ) ) | 
						
							| 62 | 59 61 | syl5ibrcom | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  ∧  ( 𝑎  ∈  ( Base ‘ 𝑅 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 𝑥  =  〈 𝑎 ,  𝑏 〉  →  ( 𝑥 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) ,  ( 0g ‘ 𝑆 ) 〉 )  =  𝑥 ) ) | 
						
							| 63 | 62 | rexlimdvva | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  →  ( ∃ 𝑎  ∈  ( Base ‘ 𝑅 ) ∃ 𝑏  ∈  ( Base ‘ 𝑆 ) 𝑥  =  〈 𝑎 ,  𝑏 〉  →  ( 𝑥 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) ,  ( 0g ‘ 𝑆 ) 〉 )  =  𝑥 ) ) | 
						
							| 64 | 19 63 | biimtrid | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  →  ( 𝑥  ∈  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑆 ) )  →  ( 𝑥 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) ,  ( 0g ‘ 𝑆 ) 〉 )  =  𝑥 ) ) | 
						
							| 65 | 18 64 | sylbird | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  →  ( 𝑥  ∈  ( Base ‘ 𝑇 )  →  ( 𝑥 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) ,  ( 0g ‘ 𝑆 ) 〉 )  =  𝑥 ) ) | 
						
							| 66 | 65 | imp | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  ∧  𝑥  ∈  ( Base ‘ 𝑇 ) )  →  ( 𝑥 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) ,  ( 0g ‘ 𝑆 ) 〉 )  =  𝑥 ) | 
						
							| 67 | 2 3 4 17 48 66 | ismgmid2 | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  →  〈 ( 0g ‘ 𝑅 ) ,  ( 0g ‘ 𝑆 ) 〉  =  ( 0g ‘ 𝑇 ) ) | 
						
							| 68 | 67 | eqcomd | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑆  ∈  Mnd )  →  ( 0g ‘ 𝑇 )  =  〈 ( 0g ‘ 𝑅 ) ,  ( 0g ‘ 𝑆 ) 〉 ) |