Step |
Hyp |
Ref |
Expression |
1 |
|
xpsmnd0.t |
⊢ 𝑇 = ( 𝑅 ×s 𝑆 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
3 |
|
eqid |
⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) |
4 |
|
eqid |
⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
7 |
5 6
|
mndidcl |
⊢ ( 𝑅 ∈ Mnd → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
10 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
11 |
9 10
|
mndidcl |
⊢ ( 𝑆 ∈ Mnd → ( 0g ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( 0g ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
13 |
8 12
|
opelxpd |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ∈ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) ) |
14 |
|
simpl |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → 𝑅 ∈ Mnd ) |
15 |
|
simpr |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → 𝑆 ∈ Mnd ) |
16 |
1 5 9 14 15
|
xpsbas |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) = ( Base ‘ 𝑇 ) ) |
17 |
13 16
|
eleqtrd |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ∈ ( Base ‘ 𝑇 ) ) |
18 |
16
|
eleq2d |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) ↔ 𝑥 ∈ ( Base ‘ 𝑇 ) ) ) |
19 |
|
elxp2 |
⊢ ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) ↔ ∃ 𝑎 ∈ ( Base ‘ 𝑅 ) ∃ 𝑏 ∈ ( Base ‘ 𝑆 ) 𝑥 = 〈 𝑎 , 𝑏 〉 ) |
20 |
14
|
adantr |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑅 ∈ Mnd ) |
21 |
15
|
adantr |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑆 ∈ Mnd ) |
22 |
8
|
adantr |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
23 |
12
|
adantr |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( 0g ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
24 |
|
simpl |
⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) |
25 |
24
|
adantl |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) |
26 |
|
simpr |
⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) → 𝑏 ∈ ( Base ‘ 𝑆 ) ) |
27 |
26
|
adantl |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑏 ∈ ( Base ‘ 𝑆 ) ) |
28 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
29 |
5 28
|
mndcl |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑎 ) ∈ ( Base ‘ 𝑅 ) ) |
30 |
20 22 25 29
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑎 ) ∈ ( Base ‘ 𝑅 ) ) |
31 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
32 |
9 31
|
mndcl |
⊢ ( ( 𝑆 ∈ Mnd ∧ ( 0g ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) → ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( Base ‘ 𝑆 ) ) |
33 |
21 23 27 32
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( Base ‘ 𝑆 ) ) |
34 |
1 5 9 20 21 22 23 25 27 30 33 28 31 4
|
xpsadd |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 〈 𝑎 , 𝑏 〉 ) = 〈 ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑎 ) , ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑏 ) 〉 ) |
35 |
5 28 6
|
mndlid |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑎 ) = 𝑎 ) |
36 |
14 24 35
|
syl2an |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑎 ) = 𝑎 ) |
37 |
9 31 10
|
mndlid |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) → ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑏 ) = 𝑏 ) |
38 |
15 26 37
|
syl2an |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑏 ) = 𝑏 ) |
39 |
36 38
|
opeq12d |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → 〈 ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑎 ) , ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑏 ) 〉 = 〈 𝑎 , 𝑏 〉 ) |
40 |
34 39
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 〈 𝑎 , 𝑏 〉 ) = 〈 𝑎 , 𝑏 〉 ) |
41 |
|
oveq2 |
⊢ ( 𝑥 = 〈 𝑎 , 𝑏 〉 → ( 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 𝑥 ) = ( 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 〈 𝑎 , 𝑏 〉 ) ) |
42 |
|
id |
⊢ ( 𝑥 = 〈 𝑎 , 𝑏 〉 → 𝑥 = 〈 𝑎 , 𝑏 〉 ) |
43 |
41 42
|
eqeq12d |
⊢ ( 𝑥 = 〈 𝑎 , 𝑏 〉 → ( ( 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 𝑥 ) = 𝑥 ↔ ( 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 〈 𝑎 , 𝑏 〉 ) = 〈 𝑎 , 𝑏 〉 ) ) |
44 |
40 43
|
syl5ibrcom |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 = 〈 𝑎 , 𝑏 〉 → ( 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 𝑥 ) = 𝑥 ) ) |
45 |
44
|
rexlimdvva |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( ∃ 𝑎 ∈ ( Base ‘ 𝑅 ) ∃ 𝑏 ∈ ( Base ‘ 𝑆 ) 𝑥 = 〈 𝑎 , 𝑏 〉 → ( 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 𝑥 ) = 𝑥 ) ) |
46 |
19 45
|
biimtrid |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) → ( 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 𝑥 ) = 𝑥 ) ) |
47 |
18 46
|
sylbird |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( 𝑥 ∈ ( Base ‘ 𝑇 ) → ( 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 𝑥 ) = 𝑥 ) ) |
48 |
47
|
imp |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ 𝑥 ∈ ( Base ‘ 𝑇 ) ) → ( 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 𝑥 ) = 𝑥 ) |
49 |
5 28
|
mndcl |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝑎 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
50 |
20 25 22 49
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑎 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
51 |
9 31
|
mndcl |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ ( 0g ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) → ( 𝑏 ( +g ‘ 𝑆 ) ( 0g ‘ 𝑆 ) ) ∈ ( Base ‘ 𝑆 ) ) |
52 |
21 27 23 51
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑏 ( +g ‘ 𝑆 ) ( 0g ‘ 𝑆 ) ) ∈ ( Base ‘ 𝑆 ) ) |
53 |
1 5 9 20 21 25 27 22 23 50 52 28 31 4
|
xpsadd |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( 〈 𝑎 , 𝑏 〉 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ) = 〈 ( 𝑎 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) , ( 𝑏 ( +g ‘ 𝑆 ) ( 0g ‘ 𝑆 ) ) 〉 ) |
54 |
5 28 6
|
mndrid |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑎 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = 𝑎 ) |
55 |
14 24 54
|
syl2an |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑎 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = 𝑎 ) |
56 |
9 31 10
|
mndrid |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑏 ( +g ‘ 𝑆 ) ( 0g ‘ 𝑆 ) ) = 𝑏 ) |
57 |
15 26 56
|
syl2an |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑏 ( +g ‘ 𝑆 ) ( 0g ‘ 𝑆 ) ) = 𝑏 ) |
58 |
55 57
|
opeq12d |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → 〈 ( 𝑎 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) , ( 𝑏 ( +g ‘ 𝑆 ) ( 0g ‘ 𝑆 ) ) 〉 = 〈 𝑎 , 𝑏 〉 ) |
59 |
53 58
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( 〈 𝑎 , 𝑏 〉 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ) = 〈 𝑎 , 𝑏 〉 ) |
60 |
|
oveq1 |
⊢ ( 𝑥 = 〈 𝑎 , 𝑏 〉 → ( 𝑥 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ) = ( 〈 𝑎 , 𝑏 〉 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ) ) |
61 |
60 42
|
eqeq12d |
⊢ ( 𝑥 = 〈 𝑎 , 𝑏 〉 → ( ( 𝑥 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ) = 𝑥 ↔ ( 〈 𝑎 , 𝑏 〉 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ) = 〈 𝑎 , 𝑏 〉 ) ) |
62 |
59 61
|
syl5ibrcom |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 = 〈 𝑎 , 𝑏 〉 → ( 𝑥 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ) = 𝑥 ) ) |
63 |
62
|
rexlimdvva |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( ∃ 𝑎 ∈ ( Base ‘ 𝑅 ) ∃ 𝑏 ∈ ( Base ‘ 𝑆 ) 𝑥 = 〈 𝑎 , 𝑏 〉 → ( 𝑥 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ) = 𝑥 ) ) |
64 |
19 63
|
biimtrid |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ) = 𝑥 ) ) |
65 |
18 64
|
sylbird |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( 𝑥 ∈ ( Base ‘ 𝑇 ) → ( 𝑥 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ) = 𝑥 ) ) |
66 |
65
|
imp |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ 𝑥 ∈ ( Base ‘ 𝑇 ) ) → ( 𝑥 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ) = 𝑥 ) |
67 |
2 3 4 17 48 66
|
ismgmid2 |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 = ( 0g ‘ 𝑇 ) ) |
68 |
67
|
eqcomd |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( 0g ‘ 𝑇 ) = 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ) |