Metamath Proof Explorer


Theorem xpsms

Description: A binary product of metric spaces is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypothesis xpsms.t 𝑇 = ( 𝑅 ×s 𝑆 )
Assertion xpsms ( ( 𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp ) → 𝑇 ∈ MetSp )

Proof

Step Hyp Ref Expression
1 xpsms.t 𝑇 = ( 𝑅 ×s 𝑆 )
2 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
3 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
4 simpl ( ( 𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp ) → 𝑅 ∈ MetSp )
5 simpr ( ( 𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp ) → 𝑆 ∈ MetSp )
6 eqid ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } )
7 eqid ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 )
8 eqid ( ( Scalar ‘ 𝑅 ) Xs { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) = ( ( Scalar ‘ 𝑅 ) Xs { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } )
9 1 2 3 4 5 6 7 8 xpsval ( ( 𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp ) → 𝑇 = ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) “s ( ( Scalar ‘ 𝑅 ) Xs { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) )
10 1 2 3 4 5 6 7 8 xpsrnbas ( ( 𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp ) → ran ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) )
11 6 xpsff1o2 ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) : ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) –1-1-onto→ ran ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } )
12 f1ocnv ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) : ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) –1-1-onto→ ran ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) : ran ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) –1-1-onto→ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) )
13 11 12 mp1i ( ( 𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) : ran ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) –1-1-onto→ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) )
14 fvexd ( ( 𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp ) → ( Scalar ‘ 𝑅 ) ∈ V )
15 2onn 2o ∈ ω
16 nnfi ( 2o ∈ ω → 2o ∈ Fin )
17 15 16 mp1i ( ( 𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp ) → 2o ∈ Fin )
18 xpscf ( { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } : 2o ⟶ MetSp ↔ ( 𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp ) )
19 18 biimpri ( ( 𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp ) → { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } : 2o ⟶ MetSp )
20 8 prdsms ( ( ( Scalar ‘ 𝑅 ) ∈ V ∧ 2o ∈ Fin ∧ { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } : 2o ⟶ MetSp ) → ( ( Scalar ‘ 𝑅 ) Xs { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ∈ MetSp )
21 14 17 19 20 syl3anc ( ( 𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp ) → ( ( Scalar ‘ 𝑅 ) Xs { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ∈ MetSp )
22 9 10 13 21 imasf1oms ( ( 𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp ) → 𝑇 ∈ MetSp )