Metamath Proof Explorer


Theorem xpsndisj

Description: Cartesian products with two different singletons are disjoint. (Contributed by NM, 28-Jul-2004)

Ref Expression
Assertion xpsndisj ( 𝐵𝐷 → ( ( 𝐴 × { 𝐵 } ) ∩ ( 𝐶 × { 𝐷 } ) ) = ∅ )

Proof

Step Hyp Ref Expression
1 disjsn2 ( 𝐵𝐷 → ( { 𝐵 } ∩ { 𝐷 } ) = ∅ )
2 xpdisj2 ( ( { 𝐵 } ∩ { 𝐷 } ) = ∅ → ( ( 𝐴 × { 𝐵 } ) ∩ ( 𝐶 × { 𝐷 } ) ) = ∅ )
3 1 2 syl ( 𝐵𝐷 → ( ( 𝐴 × { 𝐵 } ) ∩ ( 𝐶 × { 𝐷 } ) ) = ∅ )