Metamath Proof Explorer


Theorem xpsnen2g

Description: A set is equinumerous to its Cartesian product with a singleton on the left. (Contributed by Stefan O'Rear, 21-Nov-2014)

Ref Expression
Assertion xpsnen2g ( ( 𝐴𝑉𝐵𝑊 ) → ( { 𝐴 } × 𝐵 ) ≈ 𝐵 )

Proof

Step Hyp Ref Expression
1 snex { 𝐴 } ∈ V
2 xpcomeng ( ( { 𝐴 } ∈ V ∧ 𝐵𝑊 ) → ( { 𝐴 } × 𝐵 ) ≈ ( 𝐵 × { 𝐴 } ) )
3 1 2 mpan ( 𝐵𝑊 → ( { 𝐴 } × 𝐵 ) ≈ ( 𝐵 × { 𝐴 } ) )
4 xpsneng ( ( 𝐵𝑊𝐴𝑉 ) → ( 𝐵 × { 𝐴 } ) ≈ 𝐵 )
5 4 ancoms ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐵 × { 𝐴 } ) ≈ 𝐵 )
6 entr ( ( ( { 𝐴 } × 𝐵 ) ≈ ( 𝐵 × { 𝐴 } ) ∧ ( 𝐵 × { 𝐴 } ) ≈ 𝐵 ) → ( { 𝐴 } × 𝐵 ) ≈ 𝐵 )
7 3 5 6 syl2an2 ( ( 𝐴𝑉𝐵𝑊 ) → ( { 𝐴 } × 𝐵 ) ≈ 𝐵 )