Description: A set is equinumerous to its Cartesian product with a singleton on the left. (Contributed by Stefan O'Rear, 21-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | xpsnen2g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( { 𝐴 } × 𝐵 ) ≈ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex | ⊢ { 𝐴 } ∈ V | |
2 | xpcomeng | ⊢ ( ( { 𝐴 } ∈ V ∧ 𝐵 ∈ 𝑊 ) → ( { 𝐴 } × 𝐵 ) ≈ ( 𝐵 × { 𝐴 } ) ) | |
3 | 1 2 | mpan | ⊢ ( 𝐵 ∈ 𝑊 → ( { 𝐴 } × 𝐵 ) ≈ ( 𝐵 × { 𝐴 } ) ) |
4 | xpsneng | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐵 × { 𝐴 } ) ≈ 𝐵 ) | |
5 | 4 | ancoms | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐵 × { 𝐴 } ) ≈ 𝐵 ) |
6 | entr | ⊢ ( ( ( { 𝐴 } × 𝐵 ) ≈ ( 𝐵 × { 𝐴 } ) ∧ ( 𝐵 × { 𝐴 } ) ≈ 𝐵 ) → ( { 𝐴 } × 𝐵 ) ≈ 𝐵 ) | |
7 | 3 5 6 | syl2an2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( { 𝐴 } × 𝐵 ) ≈ 𝐵 ) |