Step |
Hyp |
Ref |
Expression |
1 |
|
xpsringd.y |
⊢ 𝑌 = ( 𝑆 ×s 𝑅 ) |
2 |
|
xpsringd.s |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
3 |
|
xpsringd.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
4 |
|
eqid |
⊢ ( mulGrp ‘ 𝑌 ) = ( mulGrp ‘ 𝑌 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
6 |
4 5
|
mgpbas |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) ) |
7 |
|
eqid |
⊢ ( 1r ‘ 𝑌 ) = ( 1r ‘ 𝑌 ) |
8 |
4 7
|
ringidval |
⊢ ( 1r ‘ 𝑌 ) = ( 0g ‘ ( mulGrp ‘ 𝑌 ) ) |
9 |
|
eqid |
⊢ ( .r ‘ 𝑌 ) = ( .r ‘ 𝑌 ) |
10 |
4 9
|
mgpplusg |
⊢ ( .r ‘ 𝑌 ) = ( +g ‘ ( mulGrp ‘ 𝑌 ) ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
12 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
13 |
11 12
|
ringidcl |
⊢ ( 𝑆 ∈ Ring → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
14 |
2 13
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
16 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
17 |
15 16
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
18 |
3 17
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
19 |
14 18
|
opelxpd |
⊢ ( 𝜑 → ⟨ ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) ⟩ ∈ ( ( Base ‘ 𝑆 ) × ( Base ‘ 𝑅 ) ) ) |
20 |
1 11 15 2 3
|
xpsbas |
⊢ ( 𝜑 → ( ( Base ‘ 𝑆 ) × ( Base ‘ 𝑅 ) ) = ( Base ‘ 𝑌 ) ) |
21 |
19 20
|
eleqtrd |
⊢ ( 𝜑 → ⟨ ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) ⟩ ∈ ( Base ‘ 𝑌 ) ) |
22 |
20
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( Base ‘ 𝑆 ) × ( Base ‘ 𝑅 ) ) ↔ 𝑥 ∈ ( Base ‘ 𝑌 ) ) ) |
23 |
|
elxp2 |
⊢ ( 𝑥 ∈ ( ( Base ‘ 𝑆 ) × ( Base ‘ 𝑅 ) ) ↔ ∃ 𝑎 ∈ ( Base ‘ 𝑆 ) ∃ 𝑏 ∈ ( Base ‘ 𝑅 ) 𝑥 = ⟨ 𝑎 , 𝑏 ⟩ ) |
24 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑆 ∈ Ring ) |
25 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑅 ∈ Ring ) |
26 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
27 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
28 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) |
29 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑏 ∈ ( Base ‘ 𝑅 ) ) |
30 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
31 |
11 30 24 26 28
|
ringcld |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 1r ‘ 𝑆 ) ( .r ‘ 𝑆 ) 𝑎 ) ∈ ( Base ‘ 𝑆 ) ) |
32 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
33 |
15 32 25 27 29
|
ringcld |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
34 |
1 11 15 24 25 26 27 28 29 31 33 30 32 9
|
xpsmul |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( ⟨ ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) ⟩ ( .r ‘ 𝑌 ) ⟨ 𝑎 , 𝑏 ⟩ ) = ⟨ ( ( 1r ‘ 𝑆 ) ( .r ‘ 𝑆 ) 𝑎 ) , ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑏 ) ⟩ ) |
35 |
|
simpl |
⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) |
36 |
11 30 12
|
ringlidm |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑎 ∈ ( Base ‘ 𝑆 ) ) → ( ( 1r ‘ 𝑆 ) ( .r ‘ 𝑆 ) 𝑎 ) = 𝑎 ) |
37 |
2 35 36
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 1r ‘ 𝑆 ) ( .r ‘ 𝑆 ) 𝑎 ) = 𝑎 ) |
38 |
|
simpr |
⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) → 𝑏 ∈ ( Base ‘ 𝑅 ) ) |
39 |
15 32 16
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑏 ) = 𝑏 ) |
40 |
3 38 39
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑏 ) = 𝑏 ) |
41 |
37 40
|
opeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ⟨ ( ( 1r ‘ 𝑆 ) ( .r ‘ 𝑆 ) 𝑎 ) , ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑏 ) ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ) |
42 |
34 41
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( ⟨ ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) ⟩ ( .r ‘ 𝑌 ) ⟨ 𝑎 , 𝑏 ⟩ ) = ⟨ 𝑎 , 𝑏 ⟩ ) |
43 |
|
oveq2 |
⊢ ( 𝑥 = ⟨ 𝑎 , 𝑏 ⟩ → ( ⟨ ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) ⟩ ( .r ‘ 𝑌 ) 𝑥 ) = ( ⟨ ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) ⟩ ( .r ‘ 𝑌 ) ⟨ 𝑎 , 𝑏 ⟩ ) ) |
44 |
|
id |
⊢ ( 𝑥 = ⟨ 𝑎 , 𝑏 ⟩ → 𝑥 = ⟨ 𝑎 , 𝑏 ⟩ ) |
45 |
43 44
|
eqeq12d |
⊢ ( 𝑥 = ⟨ 𝑎 , 𝑏 ⟩ → ( ( ⟨ ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) ⟩ ( .r ‘ 𝑌 ) 𝑥 ) = 𝑥 ↔ ( ⟨ ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) ⟩ ( .r ‘ 𝑌 ) ⟨ 𝑎 , 𝑏 ⟩ ) = ⟨ 𝑎 , 𝑏 ⟩ ) ) |
46 |
42 45
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 = ⟨ 𝑎 , 𝑏 ⟩ → ( ⟨ ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) ⟩ ( .r ‘ 𝑌 ) 𝑥 ) = 𝑥 ) ) |
47 |
46
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ( Base ‘ 𝑆 ) ∃ 𝑏 ∈ ( Base ‘ 𝑅 ) 𝑥 = ⟨ 𝑎 , 𝑏 ⟩ → ( ⟨ ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) ⟩ ( .r ‘ 𝑌 ) 𝑥 ) = 𝑥 ) ) |
48 |
23 47
|
biimtrid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( Base ‘ 𝑆 ) × ( Base ‘ 𝑅 ) ) → ( ⟨ ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) ⟩ ( .r ‘ 𝑌 ) 𝑥 ) = 𝑥 ) ) |
49 |
22 48
|
sylbird |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝑌 ) → ( ⟨ ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) ⟩ ( .r ‘ 𝑌 ) 𝑥 ) = 𝑥 ) ) |
50 |
49
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑌 ) ) → ( ⟨ ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) ⟩ ( .r ‘ 𝑌 ) 𝑥 ) = 𝑥 ) |
51 |
11 30 24 28 26
|
ringcld |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑎 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ∈ ( Base ‘ 𝑆 ) ) |
52 |
15 32 25 29 27
|
ringcld |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑏 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
53 |
1 11 15 24 25 28 29 26 27 51 52 30 32 9
|
xpsmul |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( ⟨ 𝑎 , 𝑏 ⟩ ( .r ‘ 𝑌 ) ⟨ ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) ⟩ ) = ⟨ ( 𝑎 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) , ( 𝑏 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ⟩ ) |
54 |
11 30 12
|
ringridm |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑎 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑎 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) = 𝑎 ) |
55 |
2 35 54
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑎 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) = 𝑎 ) |
56 |
15 32 16
|
ringridm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑏 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 𝑏 ) |
57 |
3 38 56
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑏 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 𝑏 ) |
58 |
55 57
|
opeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ⟨ ( 𝑎 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) , ( 𝑏 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ) |
59 |
53 58
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( ⟨ 𝑎 , 𝑏 ⟩ ( .r ‘ 𝑌 ) ⟨ ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) ⟩ ) = ⟨ 𝑎 , 𝑏 ⟩ ) |
60 |
|
oveq1 |
⊢ ( 𝑥 = ⟨ 𝑎 , 𝑏 ⟩ → ( 𝑥 ( .r ‘ 𝑌 ) ⟨ ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) ⟩ ) = ( ⟨ 𝑎 , 𝑏 ⟩ ( .r ‘ 𝑌 ) ⟨ ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) ⟩ ) ) |
61 |
60 44
|
eqeq12d |
⊢ ( 𝑥 = ⟨ 𝑎 , 𝑏 ⟩ → ( ( 𝑥 ( .r ‘ 𝑌 ) ⟨ ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) ⟩ ) = 𝑥 ↔ ( ⟨ 𝑎 , 𝑏 ⟩ ( .r ‘ 𝑌 ) ⟨ ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) ⟩ ) = ⟨ 𝑎 , 𝑏 ⟩ ) ) |
62 |
59 61
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 = ⟨ 𝑎 , 𝑏 ⟩ → ( 𝑥 ( .r ‘ 𝑌 ) ⟨ ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) ⟩ ) = 𝑥 ) ) |
63 |
62
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ( Base ‘ 𝑆 ) ∃ 𝑏 ∈ ( Base ‘ 𝑅 ) 𝑥 = ⟨ 𝑎 , 𝑏 ⟩ → ( 𝑥 ( .r ‘ 𝑌 ) ⟨ ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) ⟩ ) = 𝑥 ) ) |
64 |
23 63
|
biimtrid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( Base ‘ 𝑆 ) × ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑌 ) ⟨ ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) ⟩ ) = 𝑥 ) ) |
65 |
22 64
|
sylbird |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝑌 ) → ( 𝑥 ( .r ‘ 𝑌 ) ⟨ ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) ⟩ ) = 𝑥 ) ) |
66 |
65
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑥 ( .r ‘ 𝑌 ) ⟨ ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) ⟩ ) = 𝑥 ) |
67 |
6 8 10 21 50 66
|
ismgmid2 |
⊢ ( 𝜑 → ⟨ ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) ⟩ = ( 1r ‘ 𝑌 ) ) |
68 |
67
|
eqcomd |
⊢ ( 𝜑 → ( 1r ‘ 𝑌 ) = ⟨ ( 1r ‘ 𝑆 ) , ( 1r ‘ 𝑅 ) ⟩ ) |