| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							xpsringd.y | 
							⊢ 𝑌  =  ( 𝑆  ×s  𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							xpsringd.s | 
							⊢ ( 𝜑  →  𝑆  ∈  Ring )  | 
						
						
							| 3 | 
							
								
							 | 
							xpsringd.r | 
							⊢ ( 𝜑  →  𝑅  ∈  Ring )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							⊢ ( mulGrp ‘ 𝑌 )  =  ( mulGrp ‘ 𝑌 )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							mgpbas | 
							⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ ( mulGrp ‘ 𝑌 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							⊢ ( 1r ‘ 𝑌 )  =  ( 1r ‘ 𝑌 )  | 
						
						
							| 8 | 
							
								4 7
							 | 
							ringidval | 
							⊢ ( 1r ‘ 𝑌 )  =  ( 0g ‘ ( mulGrp ‘ 𝑌 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							⊢ ( .r ‘ 𝑌 )  =  ( .r ‘ 𝑌 )  | 
						
						
							| 10 | 
							
								4 9
							 | 
							mgpplusg | 
							⊢ ( .r ‘ 𝑌 )  =  ( +g ‘ ( mulGrp ‘ 𝑌 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							⊢ ( 1r ‘ 𝑆 )  =  ( 1r ‘ 𝑆 )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							ringidcl | 
							⊢ ( 𝑆  ∈  Ring  →  ( 1r ‘ 𝑆 )  ∈  ( Base ‘ 𝑆 ) )  | 
						
						
							| 14 | 
							
								2 13
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 1r ‘ 𝑆 )  ∈  ( Base ‘ 𝑆 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 )  | 
						
						
							| 16 | 
							
								
							 | 
							eqid | 
							⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							ringidcl | 
							⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 18 | 
							
								3 17
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 19 | 
							
								14 18
							 | 
							opelxpd | 
							⊢ ( 𝜑  →  〈 ( 1r ‘ 𝑆 ) ,  ( 1r ‘ 𝑅 ) 〉  ∈  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑅 ) ) )  | 
						
						
							| 20 | 
							
								1 11 15 2 3
							 | 
							xpsbas | 
							⊢ ( 𝜑  →  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑅 ) )  =  ( Base ‘ 𝑌 ) )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							eleqtrd | 
							⊢ ( 𝜑  →  〈 ( 1r ‘ 𝑆 ) ,  ( 1r ‘ 𝑅 ) 〉  ∈  ( Base ‘ 𝑌 ) )  | 
						
						
							| 22 | 
							
								20
							 | 
							eleq2d | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑅 ) )  ↔  𝑥  ∈  ( Base ‘ 𝑌 ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							elxp2 | 
							⊢ ( 𝑥  ∈  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑅 ) )  ↔  ∃ 𝑎  ∈  ( Base ‘ 𝑆 ) ∃ 𝑏  ∈  ( Base ‘ 𝑅 ) 𝑥  =  〈 𝑎 ,  𝑏 〉 )  | 
						
						
							| 24 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) ) )  →  𝑆  ∈  Ring )  | 
						
						
							| 25 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) ) )  →  𝑅  ∈  Ring )  | 
						
						
							| 26 | 
							
								14
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) ) )  →  ( 1r ‘ 𝑆 )  ∈  ( Base ‘ 𝑆 ) )  | 
						
						
							| 27 | 
							
								18
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) ) )  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 28 | 
							
								
							 | 
							simprl | 
							⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) ) )  →  𝑎  ∈  ( Base ‘ 𝑆 ) )  | 
						
						
							| 29 | 
							
								
							 | 
							simprr | 
							⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) ) )  →  𝑏  ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							eqid | 
							⊢ ( .r ‘ 𝑆 )  =  ( .r ‘ 𝑆 )  | 
						
						
							| 31 | 
							
								11 30 24 26 28
							 | 
							ringcld | 
							⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) ) )  →  ( ( 1r ‘ 𝑆 ) ( .r ‘ 𝑆 ) 𝑎 )  ∈  ( Base ‘ 𝑆 ) )  | 
						
						
							| 32 | 
							
								
							 | 
							eqid | 
							⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 )  | 
						
						
							| 33 | 
							
								15 32 25 27 29
							 | 
							ringcld | 
							⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) ) )  →  ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑏 )  ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 34 | 
							
								1 11 15 24 25 26 27 28 29 31 33 30 32 9
							 | 
							xpsmul | 
							⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) ) )  →  ( 〈 ( 1r ‘ 𝑆 ) ,  ( 1r ‘ 𝑅 ) 〉 ( .r ‘ 𝑌 ) 〈 𝑎 ,  𝑏 〉 )  =  〈 ( ( 1r ‘ 𝑆 ) ( .r ‘ 𝑆 ) 𝑎 ) ,  ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑏 ) 〉 )  | 
						
						
							| 35 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  →  𝑎  ∈  ( Base ‘ 𝑆 ) )  | 
						
						
							| 36 | 
							
								11 30 12
							 | 
							ringlidm | 
							⊢ ( ( 𝑆  ∈  Ring  ∧  𝑎  ∈  ( Base ‘ 𝑆 ) )  →  ( ( 1r ‘ 𝑆 ) ( .r ‘ 𝑆 ) 𝑎 )  =  𝑎 )  | 
						
						
							| 37 | 
							
								2 35 36
							 | 
							syl2an | 
							⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) ) )  →  ( ( 1r ‘ 𝑆 ) ( .r ‘ 𝑆 ) 𝑎 )  =  𝑎 )  | 
						
						
							| 38 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  →  𝑏  ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 39 | 
							
								15 32 16
							 | 
							ringlidm | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑏 )  =  𝑏 )  | 
						
						
							| 40 | 
							
								3 38 39
							 | 
							syl2an | 
							⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) ) )  →  ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑏 )  =  𝑏 )  | 
						
						
							| 41 | 
							
								37 40
							 | 
							opeq12d | 
							⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) ) )  →  〈 ( ( 1r ‘ 𝑆 ) ( .r ‘ 𝑆 ) 𝑎 ) ,  ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑏 ) 〉  =  〈 𝑎 ,  𝑏 〉 )  | 
						
						
							| 42 | 
							
								34 41
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) ) )  →  ( 〈 ( 1r ‘ 𝑆 ) ,  ( 1r ‘ 𝑅 ) 〉 ( .r ‘ 𝑌 ) 〈 𝑎 ,  𝑏 〉 )  =  〈 𝑎 ,  𝑏 〉 )  | 
						
						
							| 43 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑥  =  〈 𝑎 ,  𝑏 〉  →  ( 〈 ( 1r ‘ 𝑆 ) ,  ( 1r ‘ 𝑅 ) 〉 ( .r ‘ 𝑌 ) 𝑥 )  =  ( 〈 ( 1r ‘ 𝑆 ) ,  ( 1r ‘ 𝑅 ) 〉 ( .r ‘ 𝑌 ) 〈 𝑎 ,  𝑏 〉 ) )  | 
						
						
							| 44 | 
							
								
							 | 
							id | 
							⊢ ( 𝑥  =  〈 𝑎 ,  𝑏 〉  →  𝑥  =  〈 𝑎 ,  𝑏 〉 )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							eqeq12d | 
							⊢ ( 𝑥  =  〈 𝑎 ,  𝑏 〉  →  ( ( 〈 ( 1r ‘ 𝑆 ) ,  ( 1r ‘ 𝑅 ) 〉 ( .r ‘ 𝑌 ) 𝑥 )  =  𝑥  ↔  ( 〈 ( 1r ‘ 𝑆 ) ,  ( 1r ‘ 𝑅 ) 〉 ( .r ‘ 𝑌 ) 〈 𝑎 ,  𝑏 〉 )  =  〈 𝑎 ,  𝑏 〉 ) )  | 
						
						
							| 46 | 
							
								42 45
							 | 
							syl5ibrcom | 
							⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) ) )  →  ( 𝑥  =  〈 𝑎 ,  𝑏 〉  →  ( 〈 ( 1r ‘ 𝑆 ) ,  ( 1r ‘ 𝑅 ) 〉 ( .r ‘ 𝑌 ) 𝑥 )  =  𝑥 ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							rexlimdvva | 
							⊢ ( 𝜑  →  ( ∃ 𝑎  ∈  ( Base ‘ 𝑆 ) ∃ 𝑏  ∈  ( Base ‘ 𝑅 ) 𝑥  =  〈 𝑎 ,  𝑏 〉  →  ( 〈 ( 1r ‘ 𝑆 ) ,  ( 1r ‘ 𝑅 ) 〉 ( .r ‘ 𝑌 ) 𝑥 )  =  𝑥 ) )  | 
						
						
							| 48 | 
							
								23 47
							 | 
							biimtrid | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑅 ) )  →  ( 〈 ( 1r ‘ 𝑆 ) ,  ( 1r ‘ 𝑅 ) 〉 ( .r ‘ 𝑌 ) 𝑥 )  =  𝑥 ) )  | 
						
						
							| 49 | 
							
								22 48
							 | 
							sylbird | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  ( Base ‘ 𝑌 )  →  ( 〈 ( 1r ‘ 𝑆 ) ,  ( 1r ‘ 𝑅 ) 〉 ( .r ‘ 𝑌 ) 𝑥 )  =  𝑥 ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							imp | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑌 ) )  →  ( 〈 ( 1r ‘ 𝑆 ) ,  ( 1r ‘ 𝑅 ) 〉 ( .r ‘ 𝑌 ) 𝑥 )  =  𝑥 )  | 
						
						
							| 51 | 
							
								11 30 24 28 26
							 | 
							ringcld | 
							⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) ) )  →  ( 𝑎 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) )  ∈  ( Base ‘ 𝑆 ) )  | 
						
						
							| 52 | 
							
								15 32 25 29 27
							 | 
							ringcld | 
							⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) ) )  →  ( 𝑏 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) )  ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 53 | 
							
								1 11 15 24 25 28 29 26 27 51 52 30 32 9
							 | 
							xpsmul | 
							⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) ) )  →  ( 〈 𝑎 ,  𝑏 〉 ( .r ‘ 𝑌 ) 〈 ( 1r ‘ 𝑆 ) ,  ( 1r ‘ 𝑅 ) 〉 )  =  〈 ( 𝑎 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ,  ( 𝑏 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) 〉 )  | 
						
						
							| 54 | 
							
								11 30 12
							 | 
							ringridm | 
							⊢ ( ( 𝑆  ∈  Ring  ∧  𝑎  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝑎 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) )  =  𝑎 )  | 
						
						
							| 55 | 
							
								2 35 54
							 | 
							syl2an | 
							⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) ) )  →  ( 𝑎 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) )  =  𝑎 )  | 
						
						
							| 56 | 
							
								15 32 16
							 | 
							ringridm | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑏 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) )  =  𝑏 )  | 
						
						
							| 57 | 
							
								3 38 56
							 | 
							syl2an | 
							⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) ) )  →  ( 𝑏 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) )  =  𝑏 )  | 
						
						
							| 58 | 
							
								55 57
							 | 
							opeq12d | 
							⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) ) )  →  〈 ( 𝑎 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ,  ( 𝑏 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) 〉  =  〈 𝑎 ,  𝑏 〉 )  | 
						
						
							| 59 | 
							
								53 58
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) ) )  →  ( 〈 𝑎 ,  𝑏 〉 ( .r ‘ 𝑌 ) 〈 ( 1r ‘ 𝑆 ) ,  ( 1r ‘ 𝑅 ) 〉 )  =  〈 𝑎 ,  𝑏 〉 )  | 
						
						
							| 60 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑥  =  〈 𝑎 ,  𝑏 〉  →  ( 𝑥 ( .r ‘ 𝑌 ) 〈 ( 1r ‘ 𝑆 ) ,  ( 1r ‘ 𝑅 ) 〉 )  =  ( 〈 𝑎 ,  𝑏 〉 ( .r ‘ 𝑌 ) 〈 ( 1r ‘ 𝑆 ) ,  ( 1r ‘ 𝑅 ) 〉 ) )  | 
						
						
							| 61 | 
							
								60 44
							 | 
							eqeq12d | 
							⊢ ( 𝑥  =  〈 𝑎 ,  𝑏 〉  →  ( ( 𝑥 ( .r ‘ 𝑌 ) 〈 ( 1r ‘ 𝑆 ) ,  ( 1r ‘ 𝑅 ) 〉 )  =  𝑥  ↔  ( 〈 𝑎 ,  𝑏 〉 ( .r ‘ 𝑌 ) 〈 ( 1r ‘ 𝑆 ) ,  ( 1r ‘ 𝑅 ) 〉 )  =  〈 𝑎 ,  𝑏 〉 ) )  | 
						
						
							| 62 | 
							
								59 61
							 | 
							syl5ibrcom | 
							⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑅 ) ) )  →  ( 𝑥  =  〈 𝑎 ,  𝑏 〉  →  ( 𝑥 ( .r ‘ 𝑌 ) 〈 ( 1r ‘ 𝑆 ) ,  ( 1r ‘ 𝑅 ) 〉 )  =  𝑥 ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							rexlimdvva | 
							⊢ ( 𝜑  →  ( ∃ 𝑎  ∈  ( Base ‘ 𝑆 ) ∃ 𝑏  ∈  ( Base ‘ 𝑅 ) 𝑥  =  〈 𝑎 ,  𝑏 〉  →  ( 𝑥 ( .r ‘ 𝑌 ) 〈 ( 1r ‘ 𝑆 ) ,  ( 1r ‘ 𝑅 ) 〉 )  =  𝑥 ) )  | 
						
						
							| 64 | 
							
								23 63
							 | 
							biimtrid | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑅 ) )  →  ( 𝑥 ( .r ‘ 𝑌 ) 〈 ( 1r ‘ 𝑆 ) ,  ( 1r ‘ 𝑅 ) 〉 )  =  𝑥 ) )  | 
						
						
							| 65 | 
							
								22 64
							 | 
							sylbird | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  ( Base ‘ 𝑌 )  →  ( 𝑥 ( .r ‘ 𝑌 ) 〈 ( 1r ‘ 𝑆 ) ,  ( 1r ‘ 𝑅 ) 〉 )  =  𝑥 ) )  | 
						
						
							| 66 | 
							
								65
							 | 
							imp | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑌 ) )  →  ( 𝑥 ( .r ‘ 𝑌 ) 〈 ( 1r ‘ 𝑆 ) ,  ( 1r ‘ 𝑅 ) 〉 )  =  𝑥 )  | 
						
						
							| 67 | 
							
								6 8 10 21 50 66
							 | 
							ismgmid2 | 
							⊢ ( 𝜑  →  〈 ( 1r ‘ 𝑆 ) ,  ( 1r ‘ 𝑅 ) 〉  =  ( 1r ‘ 𝑌 ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							eqcomd | 
							⊢ ( 𝜑  →  ( 1r ‘ 𝑌 )  =  〈 ( 1r ‘ 𝑆 ) ,  ( 1r ‘ 𝑅 ) 〉 )  |