Metamath Proof Explorer


Theorem xpss1

Description: Subset relation for Cartesian product. (Contributed by Jeff Hankins, 30-Aug-2009)

Ref Expression
Assertion xpss1 ( 𝐴𝐵 → ( 𝐴 × 𝐶 ) ⊆ ( 𝐵 × 𝐶 ) )

Proof

Step Hyp Ref Expression
1 ssid 𝐶𝐶
2 xpss12 ( ( 𝐴𝐵𝐶𝐶 ) → ( 𝐴 × 𝐶 ) ⊆ ( 𝐵 × 𝐶 ) )
3 1 2 mpan2 ( 𝐴𝐵 → ( 𝐴 × 𝐶 ) ⊆ ( 𝐵 × 𝐶 ) )