Metamath Proof Explorer


Theorem xpss12

Description: Subset theorem for Cartesian product. Generalization of Theorem 101 of Suppes p. 52. (Contributed by NM, 26-Aug-1995) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion xpss12 ( ( 𝐴𝐵𝐶𝐷 ) → ( 𝐴 × 𝐶 ) ⊆ ( 𝐵 × 𝐷 ) )

Proof

Step Hyp Ref Expression
1 ssel ( 𝐴𝐵 → ( 𝑥𝐴𝑥𝐵 ) )
2 ssel ( 𝐶𝐷 → ( 𝑦𝐶𝑦𝐷 ) )
3 1 2 im2anan9 ( ( 𝐴𝐵𝐶𝐷 ) → ( ( 𝑥𝐴𝑦𝐶 ) → ( 𝑥𝐵𝑦𝐷 ) ) )
4 3 ssopab2dv ( ( 𝐴𝐵𝐶𝐷 ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦𝐶 ) } ⊆ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵𝑦𝐷 ) } )
5 df-xp ( 𝐴 × 𝐶 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦𝐶 ) }
6 df-xp ( 𝐵 × 𝐷 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵𝑦𝐷 ) }
7 4 5 6 3sstr4g ( ( 𝐴𝐵𝐶𝐷 ) → ( 𝐴 × 𝐶 ) ⊆ ( 𝐵 × 𝐷 ) )