Metamath Proof Explorer


Theorem xpss2

Description: Subset relation for Cartesian product. (Contributed by Jeff Hankins, 30-Aug-2009)

Ref Expression
Assertion xpss2 ( 𝐴𝐵 → ( 𝐶 × 𝐴 ) ⊆ ( 𝐶 × 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ssid 𝐶𝐶
2 xpss12 ( ( 𝐶𝐶𝐴𝐵 ) → ( 𝐶 × 𝐴 ) ⊆ ( 𝐶 × 𝐵 ) )
3 1 2 mpan ( 𝐴𝐵 → ( 𝐶 × 𝐴 ) ⊆ ( 𝐶 × 𝐵 ) )