| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relxp |
⊢ Rel ( 𝐴 × 𝐵 ) |
| 2 |
|
opelxp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
| 3 |
|
snssi |
⊢ ( 𝑥 ∈ 𝐴 → { 𝑥 } ⊆ 𝐴 ) |
| 4 |
|
ssun3 |
⊢ ( { 𝑥 } ⊆ 𝐴 → { 𝑥 } ⊆ ( 𝐴 ∪ 𝐵 ) ) |
| 5 |
3 4
|
syl |
⊢ ( 𝑥 ∈ 𝐴 → { 𝑥 } ⊆ ( 𝐴 ∪ 𝐵 ) ) |
| 6 |
|
vsnex |
⊢ { 𝑥 } ∈ V |
| 7 |
6
|
elpw |
⊢ ( { 𝑥 } ∈ 𝒫 ( 𝐴 ∪ 𝐵 ) ↔ { 𝑥 } ⊆ ( 𝐴 ∪ 𝐵 ) ) |
| 8 |
5 7
|
sylibr |
⊢ ( 𝑥 ∈ 𝐴 → { 𝑥 } ∈ 𝒫 ( 𝐴 ∪ 𝐵 ) ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → { 𝑥 } ∈ 𝒫 ( 𝐴 ∪ 𝐵 ) ) |
| 10 |
|
df-pr |
⊢ { 𝑥 , 𝑦 } = ( { 𝑥 } ∪ { 𝑦 } ) |
| 11 |
|
snssi |
⊢ ( 𝑦 ∈ 𝐵 → { 𝑦 } ⊆ 𝐵 ) |
| 12 |
|
ssun4 |
⊢ ( { 𝑦 } ⊆ 𝐵 → { 𝑦 } ⊆ ( 𝐴 ∪ 𝐵 ) ) |
| 13 |
11 12
|
syl |
⊢ ( 𝑦 ∈ 𝐵 → { 𝑦 } ⊆ ( 𝐴 ∪ 𝐵 ) ) |
| 14 |
5 13
|
anim12i |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( { 𝑥 } ⊆ ( 𝐴 ∪ 𝐵 ) ∧ { 𝑦 } ⊆ ( 𝐴 ∪ 𝐵 ) ) ) |
| 15 |
|
unss |
⊢ ( ( { 𝑥 } ⊆ ( 𝐴 ∪ 𝐵 ) ∧ { 𝑦 } ⊆ ( 𝐴 ∪ 𝐵 ) ) ↔ ( { 𝑥 } ∪ { 𝑦 } ) ⊆ ( 𝐴 ∪ 𝐵 ) ) |
| 16 |
14 15
|
sylib |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( { 𝑥 } ∪ { 𝑦 } ) ⊆ ( 𝐴 ∪ 𝐵 ) ) |
| 17 |
10 16
|
eqsstrid |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → { 𝑥 , 𝑦 } ⊆ ( 𝐴 ∪ 𝐵 ) ) |
| 18 |
|
zfpair2 |
⊢ { 𝑥 , 𝑦 } ∈ V |
| 19 |
18
|
elpw |
⊢ ( { 𝑥 , 𝑦 } ∈ 𝒫 ( 𝐴 ∪ 𝐵 ) ↔ { 𝑥 , 𝑦 } ⊆ ( 𝐴 ∪ 𝐵 ) ) |
| 20 |
17 19
|
sylibr |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → { 𝑥 , 𝑦 } ∈ 𝒫 ( 𝐴 ∪ 𝐵 ) ) |
| 21 |
9 20
|
jca |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( { 𝑥 } ∈ 𝒫 ( 𝐴 ∪ 𝐵 ) ∧ { 𝑥 , 𝑦 } ∈ 𝒫 ( 𝐴 ∪ 𝐵 ) ) ) |
| 22 |
|
prex |
⊢ { { 𝑥 } , { 𝑥 , 𝑦 } } ∈ V |
| 23 |
22
|
elpw |
⊢ ( { { 𝑥 } , { 𝑥 , 𝑦 } } ∈ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ↔ { { 𝑥 } , { 𝑥 , 𝑦 } } ⊆ 𝒫 ( 𝐴 ∪ 𝐵 ) ) |
| 24 |
|
vex |
⊢ 𝑥 ∈ V |
| 25 |
|
vex |
⊢ 𝑦 ∈ V |
| 26 |
24 25
|
dfop |
⊢ 〈 𝑥 , 𝑦 〉 = { { 𝑥 } , { 𝑥 , 𝑦 } } |
| 27 |
26
|
eleq1i |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ↔ { { 𝑥 } , { 𝑥 , 𝑦 } } ∈ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ) |
| 28 |
6 18
|
prss |
⊢ ( ( { 𝑥 } ∈ 𝒫 ( 𝐴 ∪ 𝐵 ) ∧ { 𝑥 , 𝑦 } ∈ 𝒫 ( 𝐴 ∪ 𝐵 ) ) ↔ { { 𝑥 } , { 𝑥 , 𝑦 } } ⊆ 𝒫 ( 𝐴 ∪ 𝐵 ) ) |
| 29 |
23 27 28
|
3bitr4ri |
⊢ ( ( { 𝑥 } ∈ 𝒫 ( 𝐴 ∪ 𝐵 ) ∧ { 𝑥 , 𝑦 } ∈ 𝒫 ( 𝐴 ∪ 𝐵 ) ) ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ) |
| 30 |
21 29
|
sylib |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ) |
| 31 |
2 30
|
sylbi |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ) |
| 32 |
1 31
|
relssi |
⊢ ( 𝐴 × 𝐵 ) ⊆ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) |