Metamath Proof Explorer


Theorem xpssres

Description: Restriction of a constant function (or other Cartesian product). (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Assertion xpssres ( 𝐶𝐴 → ( ( 𝐴 × 𝐵 ) ↾ 𝐶 ) = ( 𝐶 × 𝐵 ) )

Proof

Step Hyp Ref Expression
1 df-res ( ( 𝐴 × 𝐵 ) ↾ 𝐶 ) = ( ( 𝐴 × 𝐵 ) ∩ ( 𝐶 × V ) )
2 inxp ( ( 𝐴 × 𝐵 ) ∩ ( 𝐶 × V ) ) = ( ( 𝐴𝐶 ) × ( 𝐵 ∩ V ) )
3 inv1 ( 𝐵 ∩ V ) = 𝐵
4 3 xpeq2i ( ( 𝐴𝐶 ) × ( 𝐵 ∩ V ) ) = ( ( 𝐴𝐶 ) × 𝐵 )
5 1 2 4 3eqtri ( ( 𝐴 × 𝐵 ) ↾ 𝐶 ) = ( ( 𝐴𝐶 ) × 𝐵 )
6 sseqin2 ( 𝐶𝐴 ↔ ( 𝐴𝐶 ) = 𝐶 )
7 6 biimpi ( 𝐶𝐴 → ( 𝐴𝐶 ) = 𝐶 )
8 7 xpeq1d ( 𝐶𝐴 → ( ( 𝐴𝐶 ) × 𝐵 ) = ( 𝐶 × 𝐵 ) )
9 5 8 eqtrid ( 𝐶𝐴 → ( ( 𝐴 × 𝐵 ) ↾ 𝐶 ) = ( 𝐶 × 𝐵 ) )