Description: Restriction of a constant function (or other Cartesian product). (Contributed by Stefan O'Rear, 24-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | xpssres | ⊢ ( 𝐶 ⊆ 𝐴 → ( ( 𝐴 × 𝐵 ) ↾ 𝐶 ) = ( 𝐶 × 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res | ⊢ ( ( 𝐴 × 𝐵 ) ↾ 𝐶 ) = ( ( 𝐴 × 𝐵 ) ∩ ( 𝐶 × V ) ) | |
2 | inxp | ⊢ ( ( 𝐴 × 𝐵 ) ∩ ( 𝐶 × V ) ) = ( ( 𝐴 ∩ 𝐶 ) × ( 𝐵 ∩ V ) ) | |
3 | inv1 | ⊢ ( 𝐵 ∩ V ) = 𝐵 | |
4 | 3 | xpeq2i | ⊢ ( ( 𝐴 ∩ 𝐶 ) × ( 𝐵 ∩ V ) ) = ( ( 𝐴 ∩ 𝐶 ) × 𝐵 ) |
5 | 1 2 4 | 3eqtri | ⊢ ( ( 𝐴 × 𝐵 ) ↾ 𝐶 ) = ( ( 𝐴 ∩ 𝐶 ) × 𝐵 ) |
6 | sseqin2 | ⊢ ( 𝐶 ⊆ 𝐴 ↔ ( 𝐴 ∩ 𝐶 ) = 𝐶 ) | |
7 | 6 | biimpi | ⊢ ( 𝐶 ⊆ 𝐴 → ( 𝐴 ∩ 𝐶 ) = 𝐶 ) |
8 | 7 | xpeq1d | ⊢ ( 𝐶 ⊆ 𝐴 → ( ( 𝐴 ∩ 𝐶 ) × 𝐵 ) = ( 𝐶 × 𝐵 ) ) |
9 | 5 8 | eqtrid | ⊢ ( 𝐶 ⊆ 𝐴 → ( ( 𝐴 × 𝐵 ) ↾ 𝐶 ) = ( 𝐶 × 𝐵 ) ) |