Metamath Proof Explorer


Theorem xpstopn

Description: The topology on a binary product of topological spaces, as we have defined it (transferring the indexed product topology on functions on { (/) , 1o } to ( X X. Y ) by the canonical bijection), coincides with the usual topological product (generated by a base of rectangles). (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypotheses xpstps.t 𝑇 = ( 𝑅 ×s 𝑆 )
xpstopn.j 𝐽 = ( TopOpen ‘ 𝑅 )
xpstopn.k 𝐾 = ( TopOpen ‘ 𝑆 )
xpstopn.o 𝑂 = ( TopOpen ‘ 𝑇 )
Assertion xpstopn ( ( 𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp ) → 𝑂 = ( 𝐽 ×t 𝐾 ) )

Proof

Step Hyp Ref Expression
1 xpstps.t 𝑇 = ( 𝑅 ×s 𝑆 )
2 xpstopn.j 𝐽 = ( TopOpen ‘ 𝑅 )
3 xpstopn.k 𝐾 = ( TopOpen ‘ 𝑆 )
4 xpstopn.o 𝑂 = ( TopOpen ‘ 𝑇 )
5 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
6 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
7 eqid ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } )
8 1 2 3 4 5 6 7 xpstopnlem2 ( ( 𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp ) → 𝑂 = ( 𝐽 ×t 𝐾 ) )