Description: The topology on a binary product of topological spaces, as we have defined it (transferring the indexed product topology on functions on { (/) , 1o } to ( X X. Y ) by the canonical bijection), coincides with the usual topological product (generated by a base of rectangles). (Contributed by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpstps.t | ⊢ 𝑇 = ( 𝑅 ×s 𝑆 ) | |
| xpstopn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑅 ) | ||
| xpstopn.k | ⊢ 𝐾 = ( TopOpen ‘ 𝑆 ) | ||
| xpstopn.o | ⊢ 𝑂 = ( TopOpen ‘ 𝑇 ) | ||
| Assertion | xpstopn | ⊢ ( ( 𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp ) → 𝑂 = ( 𝐽 ×t 𝐾 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xpstps.t | ⊢ 𝑇 = ( 𝑅 ×s 𝑆 ) | |
| 2 | xpstopn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑅 ) | |
| 3 | xpstopn.k | ⊢ 𝐾 = ( TopOpen ‘ 𝑆 ) | |
| 4 | xpstopn.o | ⊢ 𝑂 = ( TopOpen ‘ 𝑇 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 7 | eqid | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { 〈 ∅ , 𝑥 〉 , 〈 1o , 𝑦 〉 } ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { 〈 ∅ , 𝑥 〉 , 〈 1o , 𝑦 〉 } ) | |
| 8 | 1 2 3 4 5 6 7 | xpstopnlem2 | ⊢ ( ( 𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp ) → 𝑂 = ( 𝐽 ×t 𝐾 ) ) |