Description: The topology on a binary product of topological spaces, as we have defined it (transferring the indexed product topology on functions on { (/) , 1o } to ( X X. Y ) by the canonical bijection), coincides with the usual topological product (generated by a base of rectangles). (Contributed by Mario Carneiro, 27-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xpstps.t | ⊢ 𝑇 = ( 𝑅 ×s 𝑆 ) | |
xpstopn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑅 ) | ||
xpstopn.k | ⊢ 𝐾 = ( TopOpen ‘ 𝑆 ) | ||
xpstopn.o | ⊢ 𝑂 = ( TopOpen ‘ 𝑇 ) | ||
Assertion | xpstopn | ⊢ ( ( 𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp ) → 𝑂 = ( 𝐽 ×t 𝐾 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpstps.t | ⊢ 𝑇 = ( 𝑅 ×s 𝑆 ) | |
2 | xpstopn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑅 ) | |
3 | xpstopn.k | ⊢ 𝐾 = ( TopOpen ‘ 𝑆 ) | |
4 | xpstopn.o | ⊢ 𝑂 = ( TopOpen ‘ 𝑇 ) | |
5 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
6 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
7 | eqid | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { 〈 ∅ , 𝑥 〉 , 〈 1o , 𝑦 〉 } ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { 〈 ∅ , 𝑥 〉 , 〈 1o , 𝑦 〉 } ) | |
8 | 1 2 3 4 5 6 7 | xpstopnlem2 | ⊢ ( ( 𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp ) → 𝑂 = ( 𝐽 ×t 𝐾 ) ) |