Step |
Hyp |
Ref |
Expression |
1 |
|
xpsms.t |
β’ π = ( π
Γs π ) |
2 |
|
eqid |
β’ ( Base β π
) = ( Base β π
) |
3 |
|
eqid |
β’ ( Base β π ) = ( Base β π ) |
4 |
|
simpl |
β’ ( ( π
β βMetSp β§ π β βMetSp ) β π
β βMetSp ) |
5 |
|
simpr |
β’ ( ( π
β βMetSp β§ π β βMetSp ) β π β βMetSp ) |
6 |
|
eqid |
β’ ( π₯ β ( Base β π
) , π¦ β ( Base β π ) β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) = ( π₯ β ( Base β π
) , π¦ β ( Base β π ) β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) |
7 |
|
eqid |
β’ ( Scalar β π
) = ( Scalar β π
) |
8 |
|
eqid |
β’ ( ( Scalar β π
) Xs { β¨ β
, π
β© , β¨ 1o , π β© } ) = ( ( Scalar β π
) Xs { β¨ β
, π
β© , β¨ 1o , π β© } ) |
9 |
1 2 3 4 5 6 7 8
|
xpsval |
β’ ( ( π
β βMetSp β§ π β βMetSp ) β π = ( β‘ ( π₯ β ( Base β π
) , π¦ β ( Base β π ) β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) βs ( ( Scalar β π
) Xs { β¨ β
, π
β© , β¨ 1o , π β© } ) ) ) |
10 |
1 2 3 4 5 6 7 8
|
xpsrnbas |
β’ ( ( π
β βMetSp β§ π β βMetSp ) β ran ( π₯ β ( Base β π
) , π¦ β ( Base β π ) β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) = ( Base β ( ( Scalar β π
) Xs { β¨ β
, π
β© , β¨ 1o , π β© } ) ) ) |
11 |
6
|
xpsff1o2 |
β’ ( π₯ β ( Base β π
) , π¦ β ( Base β π ) β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) : ( ( Base β π
) Γ ( Base β π ) ) β1-1-ontoβ ran ( π₯ β ( Base β π
) , π¦ β ( Base β π ) β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) |
12 |
|
f1ocnv |
β’ ( ( π₯ β ( Base β π
) , π¦ β ( Base β π ) β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) : ( ( Base β π
) Γ ( Base β π ) ) β1-1-ontoβ ran ( π₯ β ( Base β π
) , π¦ β ( Base β π ) β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β β‘ ( π₯ β ( Base β π
) , π¦ β ( Base β π ) β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) : ran ( π₯ β ( Base β π
) , π¦ β ( Base β π ) β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β1-1-ontoβ ( ( Base β π
) Γ ( Base β π ) ) ) |
13 |
11 12
|
mp1i |
β’ ( ( π
β βMetSp β§ π β βMetSp ) β β‘ ( π₯ β ( Base β π
) , π¦ β ( Base β π ) β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) : ran ( π₯ β ( Base β π
) , π¦ β ( Base β π ) β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β1-1-ontoβ ( ( Base β π
) Γ ( Base β π ) ) ) |
14 |
|
fvexd |
β’ ( ( π
β βMetSp β§ π β βMetSp ) β ( Scalar β π
) β V ) |
15 |
|
2onn |
β’ 2o β Ο |
16 |
|
nnfi |
β’ ( 2o β Ο β 2o β Fin ) |
17 |
15 16
|
mp1i |
β’ ( ( π
β βMetSp β§ π β βMetSp ) β 2o β Fin ) |
18 |
|
xpscf |
β’ ( { β¨ β
, π
β© , β¨ 1o , π β© } : 2o βΆ βMetSp β ( π
β βMetSp β§ π β βMetSp ) ) |
19 |
18
|
biimpri |
β’ ( ( π
β βMetSp β§ π β βMetSp ) β { β¨ β
, π
β© , β¨ 1o , π β© } : 2o βΆ βMetSp ) |
20 |
8
|
prdsxms |
β’ ( ( ( Scalar β π
) β V β§ 2o β Fin β§ { β¨ β
, π
β© , β¨ 1o , π β© } : 2o βΆ βMetSp ) β ( ( Scalar β π
) Xs { β¨ β
, π
β© , β¨ 1o , π β© } ) β βMetSp ) |
21 |
14 17 19 20
|
syl3anc |
β’ ( ( π
β βMetSp β§ π β βMetSp ) β ( ( Scalar β π
) Xs { β¨ β
, π
β© , β¨ 1o , π β© } ) β βMetSp ) |
22 |
9 10 13 21
|
imasf1oxms |
β’ ( ( π
β βMetSp β§ π β βMetSp ) β π β βMetSp ) |