Step |
Hyp |
Ref |
Expression |
1 |
|
xpsms.t |
⊢ 𝑇 = ( 𝑅 ×s 𝑆 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
4 |
|
simpl |
⊢ ( ( 𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp ) → 𝑅 ∈ ∞MetSp ) |
5 |
|
simpr |
⊢ ( ( 𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp ) → 𝑆 ∈ ∞MetSp ) |
6 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { 〈 ∅ , 𝑥 〉 , 〈 1o , 𝑦 〉 } ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { 〈 ∅ , 𝑥 〉 , 〈 1o , 𝑦 〉 } ) |
7 |
|
eqid |
⊢ ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 ) |
8 |
|
eqid |
⊢ ( ( Scalar ‘ 𝑅 ) Xs { 〈 ∅ , 𝑅 〉 , 〈 1o , 𝑆 〉 } ) = ( ( Scalar ‘ 𝑅 ) Xs { 〈 ∅ , 𝑅 〉 , 〈 1o , 𝑆 〉 } ) |
9 |
1 2 3 4 5 6 7 8
|
xpsval |
⊢ ( ( 𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp ) → 𝑇 = ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { 〈 ∅ , 𝑥 〉 , 〈 1o , 𝑦 〉 } ) “s ( ( Scalar ‘ 𝑅 ) Xs { 〈 ∅ , 𝑅 〉 , 〈 1o , 𝑆 〉 } ) ) ) |
10 |
1 2 3 4 5 6 7 8
|
xpsrnbas |
⊢ ( ( 𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp ) → ran ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { 〈 ∅ , 𝑥 〉 , 〈 1o , 𝑦 〉 } ) = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs { 〈 ∅ , 𝑅 〉 , 〈 1o , 𝑆 〉 } ) ) ) |
11 |
6
|
xpsff1o2 |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { 〈 ∅ , 𝑥 〉 , 〈 1o , 𝑦 〉 } ) : ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) –1-1-onto→ ran ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { 〈 ∅ , 𝑥 〉 , 〈 1o , 𝑦 〉 } ) |
12 |
|
f1ocnv |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { 〈 ∅ , 𝑥 〉 , 〈 1o , 𝑦 〉 } ) : ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) –1-1-onto→ ran ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { 〈 ∅ , 𝑥 〉 , 〈 1o , 𝑦 〉 } ) → ◡ ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { 〈 ∅ , 𝑥 〉 , 〈 1o , 𝑦 〉 } ) : ran ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { 〈 ∅ , 𝑥 〉 , 〈 1o , 𝑦 〉 } ) –1-1-onto→ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) ) |
13 |
11 12
|
mp1i |
⊢ ( ( 𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp ) → ◡ ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { 〈 ∅ , 𝑥 〉 , 〈 1o , 𝑦 〉 } ) : ran ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { 〈 ∅ , 𝑥 〉 , 〈 1o , 𝑦 〉 } ) –1-1-onto→ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) ) |
14 |
|
fvexd |
⊢ ( ( 𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp ) → ( Scalar ‘ 𝑅 ) ∈ V ) |
15 |
|
2onn |
⊢ 2o ∈ ω |
16 |
|
nnfi |
⊢ ( 2o ∈ ω → 2o ∈ Fin ) |
17 |
15 16
|
mp1i |
⊢ ( ( 𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp ) → 2o ∈ Fin ) |
18 |
|
xpscf |
⊢ ( { 〈 ∅ , 𝑅 〉 , 〈 1o , 𝑆 〉 } : 2o ⟶ ∞MetSp ↔ ( 𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp ) ) |
19 |
18
|
biimpri |
⊢ ( ( 𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp ) → { 〈 ∅ , 𝑅 〉 , 〈 1o , 𝑆 〉 } : 2o ⟶ ∞MetSp ) |
20 |
8
|
prdsxms |
⊢ ( ( ( Scalar ‘ 𝑅 ) ∈ V ∧ 2o ∈ Fin ∧ { 〈 ∅ , 𝑅 〉 , 〈 1o , 𝑆 〉 } : 2o ⟶ ∞MetSp ) → ( ( Scalar ‘ 𝑅 ) Xs { 〈 ∅ , 𝑅 〉 , 〈 1o , 𝑆 〉 } ) ∈ ∞MetSp ) |
21 |
14 17 19 20
|
syl3anc |
⊢ ( ( 𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp ) → ( ( Scalar ‘ 𝑅 ) Xs { 〈 ∅ , 𝑅 〉 , 〈 1o , 𝑆 〉 } ) ∈ ∞MetSp ) |
22 |
9 10 13 21
|
imasf1oxms |
⊢ ( ( 𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp ) → 𝑇 ∈ ∞MetSp ) |