Step |
Hyp |
Ref |
Expression |
1 |
|
inss1 |
⊢ ( dom ( 𝐴 × 𝐵 ) ∩ ran ( 𝐴 × 𝐵 ) ) ⊆ dom ( 𝐴 × 𝐵 ) |
2 |
|
dmxpss |
⊢ dom ( 𝐴 × 𝐵 ) ⊆ 𝐴 |
3 |
1 2
|
sstri |
⊢ ( dom ( 𝐴 × 𝐵 ) ∩ ran ( 𝐴 × 𝐵 ) ) ⊆ 𝐴 |
4 |
|
inss2 |
⊢ ( dom ( 𝐴 × 𝐵 ) ∩ ran ( 𝐴 × 𝐵 ) ) ⊆ ran ( 𝐴 × 𝐵 ) |
5 |
|
rnxpss |
⊢ ran ( 𝐴 × 𝐵 ) ⊆ 𝐵 |
6 |
4 5
|
sstri |
⊢ ( dom ( 𝐴 × 𝐵 ) ∩ ran ( 𝐴 × 𝐵 ) ) ⊆ 𝐵 |
7 |
3 6
|
ssini |
⊢ ( dom ( 𝐴 × 𝐵 ) ∩ ran ( 𝐴 × 𝐵 ) ) ⊆ ( 𝐴 ∩ 𝐵 ) |
8 |
|
eqimss |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( 𝐴 ∩ 𝐵 ) ⊆ ∅ ) |
9 |
7 8
|
sstrid |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( dom ( 𝐴 × 𝐵 ) ∩ ran ( 𝐴 × 𝐵 ) ) ⊆ ∅ ) |
10 |
|
ss0 |
⊢ ( ( dom ( 𝐴 × 𝐵 ) ∩ ran ( 𝐴 × 𝐵 ) ) ⊆ ∅ → ( dom ( 𝐴 × 𝐵 ) ∩ ran ( 𝐴 × 𝐵 ) ) = ∅ ) |
11 |
9 10
|
syl |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( dom ( 𝐴 × 𝐵 ) ∩ ran ( 𝐴 × 𝐵 ) ) = ∅ ) |
12 |
11
|
coemptyd |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝐴 × 𝐵 ) ∘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
13 |
|
0ss |
⊢ ∅ ⊆ ( 𝐴 × 𝐵 ) |
14 |
12 13
|
eqsstrdi |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝐴 × 𝐵 ) ∘ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝐴 × 𝐵 ) ) |
15 |
|
neqne |
⊢ ( ¬ ( 𝐴 ∩ 𝐵 ) = ∅ → ( 𝐴 ∩ 𝐵 ) ≠ ∅ ) |
16 |
15
|
xpcoidgend |
⊢ ( ¬ ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝐴 × 𝐵 ) ∘ ( 𝐴 × 𝐵 ) ) = ( 𝐴 × 𝐵 ) ) |
17 |
|
ssid |
⊢ ( 𝐴 × 𝐵 ) ⊆ ( 𝐴 × 𝐵 ) |
18 |
16 17
|
eqsstrdi |
⊢ ( ¬ ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝐴 × 𝐵 ) ∘ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝐴 × 𝐵 ) ) |
19 |
14 18
|
pm2.61i |
⊢ ( ( 𝐴 × 𝐵 ) ∘ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝐴 × 𝐵 ) |